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1 Introduction

Over the past twenty years infinite horizon general equilibrium models with overlapping genera-

tions (OLG) have become an important tool for policy analysis, and these have been fruitfully ap-

plied in fields such as macroeconomics or public finance (see, e.g., Auerbach and Kotlikoff [1987],

and Kotlikoff [2000] for an overview). OLG models naturally involve a large number of variables

and equations that describe the equilibrium behavior of economic agents. As a consequence, the

development of large-scale OLG models is often limited by the computational capacity of available

numerical solution methods. In particular, models that exhibit a rich household side including a

variety of household-specific effects, a large number of heterogeneous households, and realistic

agent lifetimes typically require “customized solution methods” which may be both costly to im-

plement and difficult to validate.

In this paper we develop a decomposition algorithm based on “off the shelf numerical tools”1

for solving general equilibrium models with many households, of which OLG models are a spe-

cial case. Our approach is primarily appropriate for computing equilibria in models in which the

number of agents is so large that simultaneous solution methods that operate directly on the equi-

librium system of equations are infeasible due to the high dimensionality related to income and

household-specific effects. The “sequential recalibration” (SR) algorithm presented here is based

on the solution of a sequence of nonlinear complementarity problems2, although in special cases

the same procedure may be implemented by solving a sequence of convex nonlinear program-

ming problems. The main idea of our decomposition approach is to solve a market economy with

many households through the computation for equilibria for a sequence of representative agent

economies. Typically, the sequence of prices and quantities converges to the true equilibrium

allocation.

The close connection between the allocation of a competitive market economy and the opti-

mal solution to a representative agent’s planning problem is well known and widely cited in the

economic literature. The use of an optimization problem to characterize equilibrium allocations

in a general equilibrium framework goes back to Negishi [1960]. Negishi’s original paper was pri-

marily concerned with optimization as a means of proving existence. Dixon [1975] developed

1 GAMS code for our applications is available online at http://mpsge.org.
2 Rutherford [1995b] and Mathiesen [1985] have shown that a complementary-based approach is convenient, robust,

and efficient. A characteristic of many economic models is that they can be cast as a complementary problem. The
complentarity format embodies weak inequalities and complementary slackness, relevant features for models that
contain bounds on specific variables, e.g. activity levels which cannot a priori be assumed to operate at positive
intensity. Such features are not easily handled with alternative solution methods.
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the theory and computational effectiveness of “joint maximization algorithms” for multi-country

trade models. Rutherford [1999] presented the “sequential joint maximization algorithm” (SJM)

which provides a simple recursive version of Negishi’s method. There are similarities between the

SR and SJM algorithms. Both approaches solve subproblems representing relaxations of the equi-

librium conditions. The SJM algorithm ignores consumer budget constraints but retains details

of consumer demand systems. The SR algorithm employs a yet looser representation of individ-

ual consumer’s demand systems by omitting both income constraints and global properties of the

individual utility functions. The omission of global characteristics of preferences simplifies the

model but can hinder convergence. The appropriateness of our proposed solution method there-

fore depends on the characteristics of the underlying model.

Our decomposition approach can be useful for the computation of equilibria in large-scale gen-

eral equilibrium models with many households. There are many economic questions for which

heterogeneous agent models have to be used to provide answers, and an increasing amount of re-

search employs frameworks that allow for intra-cohort heterogeneity in an OLG setup.3 We believe

that our approach can be beneficial for a wide range of economic applications, in particular within

the class of OLG models, due to the following reasons. First, by significantly reducing the computa-

tional overhead of the numerical problem at hand our method facilitates the development of OLG

models which feature a complex and rich household side. This strengthens the microfoundation

of the models in general and allows to analyze in detail intra- and intergenerational distributive

consequences of economic policy. Second, our approach enables to solve OLG models that in-

clude a “realistic” number of households within each age group in the sense that the number of

households in the model (more closely) corresponds to the number of observational units avail-

able from household survey data. This avoids relying on some ad-hoc aggregation of household

groups, and thereby helps to enhance the empirical basis of the model. Third, and more generally,

our method can also be effectively applied to OLG models which display a high dimensionality

that stems from sources other than the household side. Potential applications may here include

multi-sectoral and multi-country models, or models which incorporate a detailed government sec-

tor.

3 For instance, Conesa and Krueger [1999], Kotlikoff, Smetters, and Walliser [1999], and Huggett and Ventura [1999]
investigate the intra-cohort distributive and welfare consequences of social security reform. Fehr [2000] looks at
pension reform during the demographic transition in the case of Germany. Ventura [1999] explores the general
equilibrium impact and associated distributional consequences of a revenue neutral tax reform, and Jensen and
Rutherford [2002] analyze the intra- and intergenerational welfare effects of fiscal consolidation via debt reduction.
This paper concentrates on applications within the Auerbach-Kotlikoff OLG framework. For a general discussion of
economies with heterogeneous agents, see, e.g., Rios-Rull [1995].
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In addition, our contribution adds to the recent and growing body of research that deals with

the integration of macro and microsimulation models, the “micro-macro” approach to modeling

[Bourguignon and Spadaro, 2006]. This strand of literature aims to combine the streng-ths of both

the computable general equilibrium (CGE) paradigm and microsimulation models. While CGE

models have become standard tools of quantitative policy assessment over the last twenty years,

one major critique is their reliance on the concept of the “representative agent” and their usage of

unclear aggregation procedures. The virtue of the microsimulation approach, on the other hand,

is to replace representative agents with “real households” as observed in standard household sur-

veys. This, however, is typically achieved at the cost of ignoring general equilibrium effects that

are essential for policy analysis. The simplest link between economy-wide modeling and the mi-

crosimulation approach proceeds top down, i.e. simulated policy changes obtained from an ag-

gregate representation of the economy are passed down to a microsimulation module, as, e.g., in

Bourguignon, Robilliard, and Robinson [2005] and Bourguignon and Spadaro [2006]. The prin-

cipal weakness of the top down approach is of course the absence of feedback effects from the

micro to the macro level. Relatively few studies have attempted to fully integrate both approaches,

most of them by means of employing an iterative strategy between the microsimulation and the

CGE model (Cockburn and Cororatona [2007], Savard [2003, 2005], Arntz et al. [2006]). Also be-

longing to this class of models, Rutherford, Tarr, and Shepotylo [2005] applied the SR algorithm

to a large-scale, static general equilibrium model with 25 sectors and 53,000 households to assess

the poverty effects of Russia’s WTO accession. All of these studies, however, are concerned with

applications in a static framework. Clearly, covering complex behavioral responses and potential

general equilibrium and macroeconomic effects in a dynamic setup is essential for many policy

issues.4

The present paper develops a computational technique that allows to fully integrate a com-

prehensive system of OLG households, that exhibits a substantial degree of intra-cohort hetero-

geneity, into a generic Auerbach-Kotlikoff model. We show that the positive experience of the SR

algorithm for large-scale static models carries over to dynamic applications and demonstrate its

effectiveness for solving OLG models with a large number of heterogeneous households. To find

the equilibrium transition path of the OLG economy, our algorithm solves a sequence of “related”

Ramsey optimal growth problems where the system of overlapping generations is replaced by an

4 Available models tend to concentrate on some specific behavior, abstracting from other important components
of the demo-economic life cycle. For instance, Townsend [2002], Townsend and Ueda [2003] concentrate on sav-
ing/investment behavior under uncertainty and in different financial market environments.
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infinitely-lived representative agent. We employ an iterative procedure between the macro and

micro model that is based on the successive recalibration of preferences of the artificial represen-

tative agent.

In order to characterize limitations of the algorithm, we develop local convergence theory for a

simple exchange economy due to Scarf [1960], and carry out numerical analyses to examine global

conditions under which the SR algorithm may fail to converge. We show that conditions for local

stability of our adjustment process reduce to those of a Walrasian price tâtonnement process, thus

SR belongs to a large class of algorithms commonly used in computational economics which are

robust, efficient and yet fail to provide global convergence. Our counterexample illustrates that

the SR algorithm may be ill-suited for applications in which there are significant income effects.

After having characterized limitations of the technique, we proceed to explore the algorithm’s

performance applied to large-scale OLG models. We consider a prototype Auerbach-Kotlikoff

model which includes up to 2000 heterogeneous households within each generation which dif-

fer with respect to labor productivity over the life cycle and other behavioral parameters. We

compare the performance of the SR algorithm with simultaneous solution methods as suggested

by Rasmussen and Rutherford [2004]. We find that SR can provide improvements in both effi-

ciency and robustness. We demonstrate that the decomposition algorithm can routinely solve

high-dimensional OLG models which are infeasible for conventional solution methods. One theo-

retical drawback of our method is that it fails to approximate equilibria in OLG economies that are

generically Pareto-inferior.

The rest of the paper is organized as follows. Section 2 introduces the SR algorithm for the

case of a static economy and illustrates its basic logic by means of graphical analysis. Section 3

investigates a model where convergence of the SR algorithm fails if income effects are relatively

strong. Section 4 demonstrates that our algorithm can be effectively applied to solve Auerbach-

Kotlikoff OLG models. A central issue here is to demonstrate how the behavior of the overlapping

generations households with finite lifetimes can be portrayed using a single infinitely-lived repre-

sentative agent. Furthermore, we compare the performance of our algorithm with computational

experience from conventional simultaneous solution methods. Section 5 concludes.

2 CGE with many households: a decomposition approach

This section presents our decomposition method by which a market economy with many hetero-

geneous households may be solved through the computation for equilibria for a sequence of rep-

resentative agent economies. While the primary interest is in dynamic models, it is advantageous
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to introduce the algorithm for the case of a two-sector static economy in which we can provide a

graphical description that serves to illustrate its basic logic.

2.1 A static economy

Consider the following static economy which is populated by a large number of heterogeneous

households h = 1, . . . , H each of whom is endowed with K h and Lh units of capital and labor, re-

spectively. Households earn income M h = r K h +w Lh from supplying their factor endowments

inelastically at respective market prices r and w . Household h = 1, . . . , H solve:

max
c h

1 ,c h
2

U h (ch ) =

⎡⎢⎣ 2∑
i=1

θ h
i

�
c h

i

c h
i

�ρh
⎤⎥⎦

1/ρh

s .t .
2∑

i=1

pi c h
i =M h . (1)

where the utility function is written in calibrated share form.5 θ h
i and c h

i denote the benchmark

value share and the benchmark consumption of good i for household h. Households are hetero-

geneous with respect to θ h
i , ρh , K h , and Lh .

Furthermore, there is a single representative firm which uses capital and labor services to pro-

duce two consumption goods Xi , i , j = 1, 2, according to a constant returns to scale production

function Xi = f i (K , L). All goods and factor markets are perfectly competitive.

2.2 A decomposition algorithm

The main challenge for computing equilibria in a setup where H is very large is dimensionality.

Typically, conventional simultaneous solution methods that operate directly on the equilibrium

system of equations are infeasible. Our proposed algorithm decomposes the corresponding nu-

merical problem into two parts and thereby effectively manages to reduce its dimensionality. We

approximate the general equilibrium of the underlying economic model by computing equilibria

for a sequence of representative agent economies. In each iteration, we first solve a general equilib-

rium representation of the underlying economic model in which the household side is replaced by

a single representative agent (RA). The second subproblem then consists of solving a partial equi-

librium relaxation of the original model that retains the full structure of the household demand

5 The appendix briefly reviews some fundamental aspects of calibration which underly most CGE models and which
play an important role in our algorithm.
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system. Given equilibrium prices from the previous solution of the RA economy, we compute op-

timal choices for each of the “real” households. In a next step, and to create a basis for successive

iterations, the preferences of the “artificial” RA are recalibrated such that given candidate equilib-

rium prices the RA choices replicate aggregate household choices.

The key departure from the routine use of calibration in our algorithm is the idea that the cal-

ibration of preferences occurs more than once. The first iteration of the algorithm is based on

observable benchmark data, but in subsequent iterations the preferences of the RA are sequen-

tially recalibrated to values determined in the iterative process. For the case of the static economy

as described above, the SR algorithm involves the following steps:

Step 0: Initialize the representative agent economy

In the computation of equilibria we will portray the choices of H households using a single rep-

resentative agent. To construct an RA economy of the underlying economic model, replace (1)

by:

max
C1,C2

U k (C) =

⎡⎢⎣ 2∑
i=1

Θk
i

⎛⎜⎝ Ci

C
k
i

⎞⎟⎠
ρ⎤⎥⎦

1/ρ

s .t .
2∑

i=1

pi Ci =w
H∑

h=1

Lh + r
H∑

h=1

K h (2)

where k is an iteration index. Factor endowments of the RA equal the sum of respective factor

endowments across all households. To initialize the RA economy at a consistent data point, we

have constructed the data set such that the RA model and the household model share the same

optimal consumption quantities in the initial benchmark. This is achieved by setting:

C
0
i =

H∑
h=1

c h
i (3)

Θ0
i =

p i C
0
i∑

i ′ p i ′C
0
i ′

, i �= i ′ (4)

where C
0
i andΘ0

i denote initial consumption by the RA and the aggregate value share for good i in

iteration k = 0, respectively.

This initial consumption point of the RA in the benchmark equilibrium is represented by point

A in Figure 1 where initial goods prices are denoted by P0. Benchmark prices and an arbitrary elas-

ticity are used to extrapolate preferences in the neighborhood of the benchmark point to the global

9
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FIGURE 1: SOLUTION TO THE INITIAL REPRESENTATIVE AGENT MODEL (STEP 0 AND STEP 1)

preferences of the RA, as indicated by the indifference curve which is tangent to the benchmark

budget constraint at point A. The key limitation of the RA model on the demand side is that the

“community indifference curve” represented by this indifference curve does not truthfully portray

the response of household demand to a comprehensive change in both goods and factor prices.

Step 1: Solve for a general equilibrium of the RA economy

We illustrate the solution to the RA model in the first iteration of our algorithm in Figure 1. As

depicted here, the assumed exogenous policy shock has led to an increase in factor earnings, and

a reduction in the relative price of X1 as compared with X2. This new price situation is denoted

by P1. The RA model, based on the assumed community indifference curve and the associated

change in factor and commodity prices returns point B as the optimal consumption point.

Step 2: Evaluate household demand functions

In our solution program we read equilibrium prices from the RA model and evaluate the house-

hold demand vector. This produces a different point on the same budget constraint (see Figure

2). The household demand model is based on compensated demand functions so the aggregate

budget constraint for the household demand system is equivalent to the budget constraint which

applies to the RA. Point C corresponds to the aggregate demand which results from solving the

individual household optimization problems. The extent to which C differs from B depends on

both the difference in implicit substitution elasticities and differences in income effects.

10
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FIGURE 2: EVALUATING HOUSEHOLD DEMANDS AT NEW PRICES (STEP 2)

Step 3: Recalibrate preferences of the representative agent

The next step in the algorithm consists of specifying a different set of preferences for the RA model.

The algorithm is termed “sequential recalibration” on the basis of this idea. After having solved one

RA model we construct a new RA model based on a set of preferences which are locally calibrated

to the aggregate consumption quantities at point C and the associated relative prices. This ensures

that given prices P1 the optimal consumption point of the new RA, point C in Figure 3, is consistent

with the aggregated choices by households. Preferences of the RA in iteration k , U k (C) in (2), are

based on household demands at the prices returned in iteration k −1:

C
k
i =

∑
h

c h
i (p

k−1, M k−1
h ) (5)

in which c h
i (p

k−1) is the demand for good i by household h evaluated at the candidate price vector

from the previous iteration k − 1, and where factor income of household h in iteration k , M k
h (p

k ),

is a function of prices in iteration k . Likewise, value shares in U k (C) are updated to:

Θk
i =

p k−1
i

∑
h c h

i (p
k−1, M k−1

h )∑
j p k−1

j

∑
h c h

j (p
k−1, M k−1

h )
(6)

where θ k
i is the aggregate value share of good i at iteration k−1. The indifference curves tangent at

A and B are based on identical preferences, but the indifference curve tangent at point C is based

on a new set of community indifference curves, hence it may intersect the indifference curves

based on RA utility in the previous iteration of the algorithm. Note that the preferences of the

“real” households remain unchanged throughout the entire iteration process..
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FIGURE 3: RECALIBRATION OF PREFERENCES (STEP 3)

Iterative adjustment

When the RA model is recalibrated at point C, both the representative agent and all households

are in equilibrium at C with prices P1, but at these prices firms will only supply quantities given

by point B. Hence, due to inconsistency with the supply side of the model there is a general dis-

equilibrium. To illustrate this idea, it is convenient to portray the supply side of the economy by

a production possibility frontier (PPF). Assume that the policy shock produces an expansion in

the PPF (to PPF ′) and a substantial change in relative prices from point A to B. The next step in

the solution program is to resolve for a general equilibrium of the new RA model with recalibrated

preferences at point C. Point C in Figure 4 becomes therefore interpreted as point A in the next it-

eration. The solution of this RA model is then characterized by a new optimal consumption point,

here depicted by point D, and prices P2.

Subsequent iterations involve carrying out Steps 1 to Steps 3 (Step 0 initializes the solution

procedure). We stop if some convergence metric, e.g., the 1-norm of the difference between the

price vectors from one iteration to the next, is satisfied. Note that subsequent iterations of the

algorithm only involve refinements of the demand system and result in much smaller changes in

relative prices, as indicated here by the change from C to D as compared with A to B.
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FIGURE 4: ITERATIVE ADJUSTMENT

3 Convergence theory

This section evaluates the performance of our algorithm for an economy in which the exact equi-

librium is known and where the computed allocation can be compared to the true equilibrium

allocation. We develop local convergence theory for the proposed algorithm and also examine

conditions under which the adjustment process may fail to converge.

The example is due to Scarf [1960]who considers a pure exchange economy with an equal num-

ber of n consumers and goods. Consumer h is endowed with one unit of good h and demands only

goods h and h+1. Let d i ,h denote demand for good i by consumer h. Preferences are represented

by CES utility functions with the following structure:

Uh (d ) =
�
θ d

σ
σ−1

h,h +(1−θ )d
σ
σ−1

h+1,h

�σ−1
σ

. (7)

Scarf [1960] demonstrates that this economy has a unique equilibrium in which all prices are equal

to unity.6

3.1 Local convergence

As explained in Section 2.2, the sequential recalibration algorithm iteratively adjusts the baseline

level parameter C i (and Θi (C i )) in the utility function of the representative agent. These may be

6 See Lemma 1 and Lemma 2 [Scarf, 1960, p.164]. The parameters of this utility function correspond to Scarf’s param-
eters a and b [Scarf, 1960, p.168] as: σ= 1

1+a
and θ = b

1+b
.
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normalized so that
∑

i C i = n . Market clearing commodity prices for the RA economy are deter-

mined given the baseline level parameters. Let pi (C ) denote the price of good i consistent with

C = (C 1, . . . ,C n ). In this exchange economy, let ζi

�
p (C )

�
denote the market excess demand func-

tion for good i that is obtained from evaluating household demand functions. Given the special

structure of preferences and endowments, this function has the form:

ζi

�
p (C )

�
= d i ,i +d i ,i−1−1 . (8)

Furthermore, let ξi

�
C
�

denote the value of market excess demand for good i at prices pi (C ):

ξi

�
C
�
= pi (C )ζi

�
p (C )

�
. (9)

Of course, in equilibrium it must be true that ξi (C
∗
) = 0, ∀ i . Let the initial estimate C

0
be selected

on the n-simplex, i.e.
∑

i C
0
i = n . Walras’ law ensures that the adjustment process d C i

d t = ξi

�
C
�

remains on the n-simplex:
d

∑
i C i (t )

d t =
∑

i pi (C (t ))ζi

�
p (C (t ))

�
= 0.

Local convergence concerns properties of the Jacobian matrix evaluated at the equilibrium

point,∇ξ(C ∗) = �
ξi j

�
. This Jacobian has entries defined as follows:

ξi j ≡ ∂ ξi

∂ C j
=

⎧⎨⎩
∂ ζi

�
p (C )

�
∂ C i

i = j
∂ ζi

�
p (C )

�
∂ C j

i �= j
. (10)

If all principal minors of∇ξ(C ∗) = �
ξi j

�
are negative, the adjustment process is locally convergent.

If, however,
∂ ζi

�
p (C )

�
∂ C i

> 0, the process is locally unstable. When an equilibrium is unique and the

process is uninterrupted, then local stability implies global instability.

For this model, the tâtonnement price adjustment process is unstable (in the case n = 3) when

θ
1−θ >

1
1−2σ [Scarf, 1960]. In the following, we show that the same condition implies instability

for the C -adjustment process of the SR algorithm. Furthermore, it is shown (numerically) that

while the tâtonnement and SR price adjustment processes are locally identical, they may be quite

different at points in the price space far from the equilibrium.

Given the special structure of ζi

�
p (C )

�
, we have:

∂ ζi

∂ pi
=
∂ d i ,i

∂ pi
+
∂ d i ,i−1

∂ pi
,

∂ ζi

∂ pi−1
=
∂ d i ,i−1

∂ pi−1
,

∂ ζi

∂ pi+1
=
∂ d i ,i

∂ pi+1
. (11)

Defining the “unit-utility” expenditure function for consumer i as:

ei (p ) =
�
θ p 1−σ

i +(1−θ )p 1−σ
i+1

� 1
1−σ (12)
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demand functions are given by:

d i ,i =
θ pi

e 1−σ
i pσi

, d i+1,i =
(1−θ )pi

e 1−σ
i pσi+1

. (13)

Evaluating
∂ ζi

�
p (C )

�
∂ C i

at p ∗ = 1, yields

∂ ζi

�
p (C )

�
∂ C i

=
∂ pi

∂ C i

�
(2σ−2)θ 2+(3−2σ)θ −1

�
+
∂ pi+1

∂ C i
(−θ (1−θ )(1−σ))

+
∂ pi−1

∂ C i
(−θ (1−θ )(1−σ)+1−θ ) . (14)

The function p (C ) is defined implicitly by the equation:

�ζ�p ,C
�
= 0 (15)

where �ζ�p ,C
�

denotes the vector of market excess demand functions from the representative

agent economy. Its i -th element is given by:

�ζi

�
p ,C

�
=

C i�∑
i ′ αi ′ p 1−�σ

i ′
�

p �σ
i

−1 (16)

with αi ′ =
C i∑
i ′ C i ′

and where �σ denotes the elasticity of substitution for the representative agent. In

order to evaluate∇p �ζ at C
∗
, we make a first-order Taylor series expansion:

∇p �ζ�p ,C
�

d p +∇C
�ζ�p ,C

�
d C = 0 (17)

which gives:
d p

d C
=−∇−1

p
�ζ∇C

�ζ . (18)

Evaluating gradients at p ∗ =C
∗
= 1 yields:

∇p �ζ=
⎛⎜⎜⎜⎜⎜⎝
−(2�σ+1)

3
−(1−�σ)

3
−(1−�σ)

3

−(1−�σ)
3

−(2�σ+1)
3

−(1−�σ)
3

−(1−�σ)
3

−(1−�σ)
3

−(2�σ+1)
3

⎞⎟⎟⎟⎟⎟⎠ (19)

−∇−1
p

�ζ=
⎛⎜⎜⎜⎜⎜⎝

�σ+2
3�σ �σ−1

3�σ �σ−1
3�σ�σ−1

3�σ �σ+2
3�σ �σ−1

3�σ�σ−1
3�σ �σ−1

3�σ �σ+2
3�σ

⎞⎟⎟⎟⎟⎟⎠ (20)
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∇C
�ζ=

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠ . (21)

Hence, in the neighborhood of the equilibrium:

∂ pi (C )

∂ C i
=

�σ+2

3�σ > 0,
∂ pi (C )

∂ C j
= 0 . (22)

From (14) it therefore follows that the adjustment process in C is locally unstable if:

(2σ−2)θ 2+(3−2σ)θ −1> 0 (23)

which is equivalent to the condition for instability of a simple price tâtonnement adjustment pro-

cess as demonstrated by Scarf [1960, p.169].

3.2 Global convergence

Although the local behavior of the price tâtonnement and the SR algorithm adjustment processes

are identical, they produce different search directions away from a neighborhood of the equilib-

rium. This is apparent in Figure 5 where the two vector fields are superimposed. Only local to

the equilibrium where price effects dominate income effects, do the two fields coincide exactly,

as indicated by (23). As one moves further away from the center of the simplex, the vector fields

become more divergent. We find that there are cases in which the SR algorithm does not converge

even though the price tâtonnement is globally stable. This convergence failure is a manifesta-

tion of the simplifying nature of the adjustment process. By solving a sequence of representative

agent economies the SR algorithm omits both income constraints and global properties of the in-

dividual utility functions. While the omission of global characteristics of preferences reduces the

dimensionality of the model significantly, this may at the same time hinder convergence.

To assess the global convergence properties of the SR algorithm, we perform a grid search

over the behavioral parameters σ and θ . We let the algorithm start from a disequilibrium point

p = (0.2, 0.2, 0.6) where local equilibrium dynamics are absent. Figure 6 reveals that convergence

of the SR algorithm fails for combinations of small values forσ and high values for θ .7 For these pa-

rameter configurations, income effects are relatively strong vis-à-vis substitution effects. In cases

7 For both parameters, we choose a grid resolution of 0.05, set �σ = 1, and allow for a maximum of 1000 iterations.
The adjustment process is said to converge if the 1-norm of differences between a computed price vector and the
equilibrium point drops below some metric δ, i.e. ‖pi − p ∗i ‖1 < δ, where p ∗i denotes the analytical equilibrium
solution. We set δ= 0.01.
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FIGURE 5: COMPARISON OF SR AND TÂTONNEMENT FIELDS

where convergence is achieved, the presence of significant income effects means that more itera-

tions are required to find the true equilibrium. If, however, income effects are relatively weak, the

SR algorithm only requires a modest number of iterations. The appropriateness of our solution

method therefore depends on the characteristics of the underlying model.

One last remark is in order. To guarantee convergence of the SR algorithm, it is necessary to

select a sufficiently large value for �σ, the elasticity of substitution of the representative agent. If�σ is too low, convergence may fail even if income effects are relatively weak. Non-convergent

behavior, however, that occurs in the bottom right corner of Figure 6 is robust with respect to �σ.

The choice of �σ is entirely innocuous since this parameter bears no economic significance for

the behavior of “real” households in the underlying economic model. Computational experience

suggests to use values of order �σ≥ 1.
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4 OLG models with many households

This section presents a decomposition algorithm for solving overlapping generations models with

many heterogeneous households. The proposed algorithm is an application of the SR approach

with a few elaborations specific to the OLG context. As in the static setting, an equilibrium alloca-

tion is approximated by computing equilibria for a sequence of representative agent economies.

In the case of OLG, the representative agent economies are Ramsey optimal growth problems

where the system of overlapping generations is replaced by a single infinitely-lived agent.

The algorithm is demonstrated for a simple prototype Auerbach-Kotlikoff OLG economy with

production activities, intra-cohort heterogeneity, a labor-leisure choice, and a government sector.8

We solve for the effects of a tax reform that is introduced unexpectedly in year zero, and then

evaluate the performance of our algorithm against numerical solutions that are available from

simultaneous solution methods.

4.1 A prototype Auerbach-Kotlikoff OLG model

4.1.1 Households

Time is discrete and extends from t = 0, . . . ,∞. There is no aggregate or household-specific uncer-

tainty. The economy is populated by overlapping generations of heterogeneous agents. A house-

8 The example is an adapted version of the production model presented in Rasmussen and Rutherford [2004]. We
consider a closed economy version of their model and allow for heterogeneity within one generation. While we
investigate a single-sector here, the logic can be readily extended to a multisectoral framework.
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hold of generation g and type h = 1, . . . , H is born at the beginning of year t = g , lives for N + 1

years, and is endowed with ωg ,h,t = ω (1+ γ)g units of time in each period g ≤ t ≤ g +N , and

πg ,h,t is an index of labor productivity over the life cycle.9 γ denotes the exogenous steady-state

growth rate of the economy. Leisure time, �g ,h,t , enters in a CES function with consumption, c g ,h,t ,

to create full consumption, z g ,h,t . Expressed with present value prices, the optimization problem

is:

max
c g ,h,t ,�g ,h,t

u g ,h

�
z g ,h,t

�
=

g+N∑
t=g

�
1

1+ρ

�t−g z 1−1/σh
g ,h,t

1−1/σh

s .t . z g ,h,t =
�
αc νg ,h,t +(1−α)�νg ,h,t

� 1
ν

pc ,t c g ,h,t +py ,t i g ,h,t ≤ pl ,t πg ,h,t (ωg ,h,t − �g ,h,t )+pr,t k g ,h,t +py ,t ζg ,h,t

k g ,h,t+1 ≤ (1−δ)k g ,h,t + i g ,h,t

�g ,h,t ≤ ωg ,h,t

c g ,h,t ,�g ,h,t ≥ 0

k g ,h,g ≤ k g ,h,g , i g ,h,t+N +(1−δ)k g ,h,t+N ≥ 0 (24)

where ρ is the utility discount factor, σh is the intertemporal elasticity of substitution for house-

hold h, σν = 1/(1− ν ) is the uniform elasticity of substitution between consumption and leisure,

α is a share parameter, and px ,t , x = {y , c , l , r }, denotes the price for the single output good, the

(after-tax) price for consumption, the wage rate, and the capital rental rate, respectively. Hetero-

geneity relates to intra-cohort differences in labor productivity and the intertemporal elasticity of

substitution. Households have access to a storage technology: they can use one unit of the out-

put good to obtain one unit of the capital good next period. We denote the investment into this

technology by i g ,h,t . We do not restrict i g ,h,t , because we want to permit households to borrow

against future labor income. Private capital k g ,h,t depreciates at an annual rate of δ. k g ,h,g de-

notes the capital holdings of generation g at the beginning of life t = g . Initial old generations, i.e.

generations born prior to period zero, are endowed with a non-zero amount of assets: k g ,h,0 �= 0,

∀ g = −N , . . . ,−1,∀h. The initial asset distribution for these generations is selected such that the

economy is on a balanced growth path. We assume that newborn households enter with zero as-

sets: k g ,h,g = 0, ∀ g ≥ 0,∀h. We furthermore rule out that households die in debt. In each period

of the life cycle households receive ζg ,h,t units of the output good as a lump-sum transfer from the

9 ω is a constant income scaling factor which is determined in the initial calibration procedure to reconcile house-
hold behavior with the aggregate benchmark data. For more details see Rasmussen and Rutherford [2004].
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government. For simplicity, we assume that these transfers are allocated to each generation and

type according to its share in the total population. We moreover assume that the government has

no outstanding debt in the initial steady state and hence households’ total assets in period zero

are equal to the value of the capital stock, i.e.
∑0

g=−N

∑H
h=1 k g ,h,t = (1+ r )K0, where r is the steady

state interest rate and K0 is the initial aggregate capital stock.10

4.1.2 Firms

There is a single representative firm which in each period t uses capital and labor services to

produce a single output good Yt according to a linearly homogeneous production function Yt =

F (Kt , L t ). All goods and factor markets are perfectly competitive.

4.1.3 Government

The government agent collects revenue from levying taxes on consumption, and on capital and la-

bor income. Tax revenue is spent on government expenditure (Gt ) and on total transfers to house-

holds (Tt =
∑t

g=t−N

∑H
h=1ζg ,h,t ). We assume that the consumption tax rate (τc

t ) adjusts such that

the government budget is balanced on a period-by-period basis:

τr
t pr,t Rt +τl

t pl ,t L t +τc
t py ,t Ct = py ,t Gt +py ,t Tt (25)

where τr
t and τl

r are the net tax rates on capital and labor income, respectively.

4.1.4 Aggregate economy restrictions

Given inter- and intragenerational heterogeneity, the following feasibility conditions must be sat-

isfied:

L t =
t∑

g=t−N

H∑
h=1

ωg ,h,t − �g ,h,t (26)

It =
t∑

g=t−N

H∑
h=1

i g ,h,t (27)

Kt =
t∑

g=t−N

H∑
h=1

k g ,h,t (28)

Ct =
t∑

g=t−N

H∑
h=1

c g ,h,t . (29)

10 We therefore implicitly assume that the government has no outstanding debt at period zero. A situation with non-
zero initial government debt slightly complicates the calibration procedure but is conceptually straightforward (see
Rasmussen and Rutherford [2004]).
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The law of motion for the aggregate capital stock is given by:

Kt+1 = (1−δ)Kt + It . (30)

Finally, the single output good may be used for household consumption, investment, or govern-

ment consumption implying the following condition for balance between aggregate supply and

demand:

F (Kt , L t ) =Ct + It +Gt . (31)

4.2 A decomposition algorithm for OLG models

We approximate the unknown equilibrium allocation of the OLG economy described by (24)-(31)

by computing equilibria for a sequence of “related” Ramsey (optimal) growth problems. Figure

7 provides a schematic exposition of the steps involved in the decomposition procedure. Each

General equilibrium prices
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FIGURE 7: SOLVING OLG BY RAMSEY: STEPS IN THE DECOMPOSITION ALGORITHM

iteration comprises the following three steps. In the first step, we solve for the general equilib-

rium of the “related” Ramsey growth problem (Section 4.2.1) which retains the full structure of

the production side of the model but replaces the system of OLG households by a representative

infinitely-lived consumer agent. The second step computes optimal household behavior given the

equilibrium prices from the Ramsey economy (Section 4.2.3). This step can be viewed as solving

a partial equilibrium relaxation of the underlying economy that ignores general equilibrium inter-

actions with the production side of the model but retains the full structure of the OLG demand
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system. In the third step, we construct a new Ramsey optimal growth problem by recalibrating

the preferences of the “artificial” Ramsey agent based on households’ choices from Step 2 (Sec-

tion 4.2.4). Subsequent iterations proceed with analogous steps. Typically, the sequence of prices

and quantities computed by our algorithm converges to the true equilibrium allocation. In what

follows, we provide more details on each of the involved steps.

4.2.1 The “related” Ramsey growth problem

As the “related” Ramsey optimal growth problem, we define a model of the underlying OLG econ-

omy in which the system of overlapping generations is replaced by a single infinitely-lived repre-

sentative agent, hereafter called the Ramsey agent. Apart from this modification, the entire eco-

nomic structure of the OLG model including the behavior of other agents, market structure, the

number of sectors etc. is unchanged. The Ramsey agent solves the following optimization prob-

lem:

max
Ct ,�t

U (Zt ) =

⎡⎢⎢⎣ T∑
t=0

Θk
t

⎛⎜⎝Zt

Z
k
t

⎞⎟⎠
1−1/�σ⎤⎥⎥⎦

�σ�σ−1

s .t . Zt =

⎛⎜⎝∆k
t

⎛⎜⎝ Ct

C
k
t

⎞⎟⎠
ν

+
�

1−∆k
t

�⎛⎜⎝ �t

� k
t

⎞⎟⎠
ν⎞⎟⎠

1
ν

Ct + It +Gt = F (Kt ,Ωk
t −�t )

Kt+1 ≤ (1−δ)Kt + It

�t ≤ Ωk
t

Ct ,�t ≥ 0

K0 ≤ Ψ

KT+1 = K̂T+1 (32)

where Ct , �t , Zt , Kt , It , and Ωk
t now denote consumption, leisure time, full consumption, the

capital stock, investment, and the time endowment by the Ramsey agent, respectively, and where�σ is the intertemporal elasticity of substitution. k denotes an iteration index.11

The initial capital stock in the Ramsey economy is given by the aggregate capital stock of the

OLG economy in year zero:

11 Note that the nested lifetime utility function U (Zt ) is written in calibrated share form. We monotonically transform
preferences in (24) to obtain a linear homogenous CES representation. This does not alter the underlying preference
orderings and hence optimization yields the same demand functions.
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Ψ=
0∑

g=−N

H∑
h=1

k g ,h,0 . (33)

To approximate the infinite-horizon Ramsey economy by a finite-dimensional complementar-

ity problem, we use the state-variable targetting method suggested by Lau, Pahlke, and Rutherford

[2002] in which the target post-terminal capital stock (K̂T+1) is chosen at a level such that invest-

ments grow at the steady-state rate in the last period:

IT

IT−1
= 1+γ. (34)

4.2.2 Initialization

In order to initialize the “related” Ramsey growth problem, it is first necessary to characterize a

baseline reference path of the OLG economy. For simplicity, we assume that the economy is ini-

tially on a balanced growth path and employ a steady-state calibration procedure proposed by Ras-

mussen and Rutherford [2004] which proceeds in two steps. In the first step, the optimal profile

of decision variables for a reference generation of type h is computed subject to given aggregate

benchmark data in year zero. The second step involves extrapolating the results from the house-

hold calibration model, together with remaining elements in the aggregate dataset, to set up a

baseline reference path.

Given this reference path, we choose an initial set of preferences for the representative agent

such that the Ramsey growth problem endogenously reproduces the baseline reference path of

the underlying OLG economy. This is accomplished by selecting appropriate reference levels and

value share parameters for U (Zt ) in (32):

C
0
t =

t∑
g=t−N

H∑
h=1

c g ,h,t (35)

� 0
t =

t∑
g=t−N

H∑
h=1

�g ,h,t (36)

Z
0
t = C

0
t +� 0

t (37)

∆0
t =

p t C
0
t

p t C
0
t +p t � 0

t

(38)

Θ0
t =

p t Z
0
t∑

t ′ p t ′Z
0
t ′

(39)

where p t , t = 0, . . . , T and x g ,h,t , x = {c ,�}, denote benchmark prices and household quantity

choices, respectively. The superscript “0” indicates starting values.
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The Ramsey agent is endowed with units of “productive” time, Ωt , that reflect households’ la-

bor productivity in a given period:

Ω0
t =

t∑
g=t−N

H∑
h=1

πg ,h,t (ωg ,h,t − �g ,h,t )+ �g ,h,t (40)

where �g ,h,t is benchmark leisure time by households.

The algorithm is started off by solving the initial Ramsey growth problem as defined by (25),

and (32)-(40). If no policy change is implemented, the given specification of the Ramsey economy

ensures that it can reproduce the initial steady state path of the underlying OLG economy as an

equilibrium solution.

4.2.3 The partial equilibrium relaxation

The second step of the algorithm solves a partial equilibrium relaxation of the underlying OLG

economy which retains full details of the household demand system but ignores general equilib-

rium effects. Hence, any interactions via commodity and factor markets and with the production

side of the economy are suppressed. Given equilibrium prices from the previous solution of the

“related” Ramsey growth problem, we evaluate demand functions for each generation and type

that originate from the set of household problems in (24).

In order to obtain a good approximation of the underlying OLG economy, it is necessary to

compute optimal household demand for all households and types in each period of the numerical

model that runs from t = 0, . . . , T . This information then forms the basis for the recalibration of

preferences of the Ramsey agent in the subsequent step of the algorithm. A complication arises

for periods T −N + 1 ≤ t ≤ T in which generations are born that live beyond T (hereafter called

terminal generations). To compute the optimal decision profiles of these agents, it is essential to

account for their behavior over the full life cycle. With the last cohort of households being born

in period T , this means that there are N post-terminal periods that have to be included in the

analysis, which we denote by t̂ = T, . . . , T +N . We resolve this issue by employing a steady-state

closure rule which postulates that the economy has reached a steady state by period T −N + 1.

This assumption imposes no additional restriction on the model if T is chosen sufficiently large.12

Exploiting this fact, prices for post-terminal periods can be inferred from the following steady-

state projection:

12 The specific choice of T depends on the nature of the policy shock that is considered. In our numerical examples
below we set T = 150.
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x k
t̂ =

x k
T

(1+ r∞)t̂−T
(41)

where x k
t̂ = {pt k

g ,h,t̂ , pt k
y ,t̂ , pt k

l ,t̂ } denote the post-terminal price for full consumption, the output

good, and the market wage all obtained in iteration k , respectively. Correspondingly, x k
T refer to

respective prices in the terminal period. The price for full consumption can be obtained as:

p k
g ,h,t = e g ,h,t

�
p k

c ,t , p k
l ,t

�
(42)

where e g ,h,t (·) denotes the unit expenditure function for z g ,h,t . For future reference, let p g ,h,t

denote respective benchmark prices. In (41), r∞ = p c
T−1
/p c

T
− 1 defines the endogenous (steady-

state) interest rate in the terminal period.

Finally, the lifetime income of generation g and type h, evaluated at candidate prices from

iteration k , is given by:

M k
g ,h =

g+N∑
t=g

πg ,h,t p k
l ,t ωg ,h,t +p k

y ,t ζg ,h,t +p k
r,0 k g ,h,g . (43)

A similar formula applies to the lifetime income of terminal generations where for post-terminal

periods projected prices according to (41) are used. For future reference, let M g ,h denote the life-

time income at benchmark prices.

We are now in a position to compute the demand for of households in the model. In order to

reduce computational complexity, we solve the dual problem making use of formulas (A-7)-(A-9)

(see the Appendix). Let e g ,h (pk
g ,h ) denote the expenditure function for a unit of u g ,h which —given

the specific structure of preferences13— can be constructed using the vector of prices for the full

consumption good, pk
g ,h (including projected prices). Indirect utility can then be written as:

Vg ,h (pk
g ,h , M k

g ,h ) =
M k

g ,h

e g ,h (pk
g ,h )M g ,h

for ∀ g , ∀h . (44)

Applying Roy’s identity, optimal household demand (in the context of the partial equilibrium re-

laxation) for full consumption, goods consumption and leisure, respectively, evaluated at the can-

didate price vector pk
g ,h , are updated in each iteration according to:

13 Note that in the given case of homothetic preferences, the unit expenditure function conveys all information con-
cerning the underlying preferences.
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z g ,h,t (pk
g ,h , M k

g ,h ) = z g ,h,t Vg ,h (pk
g ,h , M k

g ,h )

�
e g ,h (pk

g ,h )p g ,h,t

p k
g ,h,t

�σh

(45)

c g ,h,t (pk
g ,h , M k

g ,h ) = c g ,h,t z g ,h,t (pk
g ,h , M k

g ,h )

�
p k

g ,h,t p t

p k
c ,t p g ,h,t

�σν
(46)

�g ,h,t (pk
g ,h , M k

g ,h ) = �g ,h,t z g ,h,t (pk
g ,h , M k

g ,h )

�
p k

g ,h,t p t

p k
l ,t πg ,h,t p g ,h,t

�σν
. (47)

4.2.4 Recalibration of the Ramsey agent’s preferences

The last step in each iteration is to construct a new Ramsey optimal growth problem by recalibrat-

ing the Ramsey agent’s preferences based on optimal household choices from the previous step.

This is accomplished by updating level parameters in (32) according to:

C
k+1
t =

t∑
g=t−N

H∑
h=1

c g ,h,t (pk
g ,h , M k

g ,h ) (48)

� k+1
t =

t∑
g=t−N

H∑
h=1

�g ,h,t (pk
g ,h , M k

g ,h ) (49)

Z
k
t = C

k
t +� k

t (50)

and value share parameters in (32) according to:

∆k+1
t =

p k
c ,t C

k
t

p k
c ,t C

k
t +p k

l ,t � k
t

(51)

Θk+1
t =

p k
c ,t C

k
t +p k

l ,t � k
t∑

t ′
�

p k
c ,t ′C

k
t ′ +p k

l ,t ′ � k
t ′
� . (52)

With varying prices, households adjust their labor supply, and hence the composition of the

labor force with respect to age and household type is altered. But since labor productivity depends

on these two socio-economic characteristics, aggregate labor productivity in the underlying OLG

economy also changes. We therefore adjust the time endowment of the Ramsey agent in each

iteration according to:

Ωk+1
t =

t∑
g=t−N

H∑
h=1

πg ,h,t (ωg ,h,t − �g ,h,t (pk
g ,h , M k

g ,h ))+ �g ,h,t (pk
g ,h , M k

g ,h ) . (53)

Thus, the newly constructed Ramsey optimal growth problem in iteration k +1 consists of solving

(32) (subject to (33) and (34)) with updated preference parameters and time endowment as defined

by (48)–(53). This completes the description of the algorithm.
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4.3 Algorithmic performance

The OLG economy presented above has no analytical solution. In order to evaluate our algo-

rithm, we therefore compare its performance to those of conventional simultaneous/direct so-

lution methods. As a benchmark, we take a complementarity-based approach as suggested by

Rasmussen and Rutherford [2004].

The base case parametrization of the economy is as follows. Households live for 51 years or

N = 50. We set r̄ = 0.05, γ = 0.01, δ = 0.07, νh = 0.8, β = 0.32, and α = 0.8. In our numerical

analysis, we test the performance of our algorithm for a different number of household types H

and also allow for various degrees of intra-cohort heterogeneity. For simplicity, we assume that

σh , h = 1, . . . , H , are generated by random draws from a uniform distribution defined over [σ,σ].

Likewise, differences in labor productivity are modeled by randomly drawing a g ,h from a uniform

distribution with support a ≤ a g ,h ≤ a , where the parameter a g ,h enters the labor productivity

profile over the life cycle as: πg ,h,t = exp
�

4.47+a g ,h
 

t − g
!−0.00067

 
t − g

!2
�

. Furthermore, it

is assumed that each type has equal size in the total population. The values for the aggregate data

including tax payments in the initial benchmark are based on Input-Output tables for the U.S.

economy in 1996 and are presented at the top of the corresponding computer programs. We solve

the model for T = 150 years.

4.3.1 Solving for a policy shock: a fundamental tax reform

We now present an illustrative application of our decomposition algorithm by solving for the ef-

fects of a policy change that in year zero unexpectedly and permanently reduces the capital in-

come tax and introduces a consumption tax to endogenously balance the government budget.

The capital income tax is reduced from a benchmark value of 28.4% to 22.9%.

We start out by considering a case where H = 1, σh = 1.2, and a g ,h = 0.04. Figure 8 shows the

sequence of time paths for investment that emerges from the iterative procedure of our algorithm.

The true transition path to a new steady state of the OLG economy as computed by our bench-

mark simultaneous solution method is labeled “OLG”. "Iteration 1" plots the impact of the tax

reform scenario after the first iteration of our solution method. This is equivalent to what would

be obtained from solving a Ramsey optimal growth model. Each subsequent iteration of the al-

gorithm produces a new time path for investment that eventually converges to the true solution.

We terminate the search process if ‖p k
c ,t − p ∗c ,t ‖1 < 10−6. For the current model, this is achieved

after 34 iterations. Figure 9 shows a similar picture for the welfare change experienced by each
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FIGURE 8: SOLVING OLG BY RAMSEY: SEQUENCE OF INVESTMENT TIME PATHS

generation.14 Note that in terms of welfare changes, stopping after iteration 1 corresponds to a sit-

uation which would emerge from a pure top down approach that fails to take into account general

equilibrium feedback effects from the micro to the macro level.

To assess the quality of the approximation, we use the following two measures. First, the ap-

proximation error e k reports the 1-norm of differences between computed consumption prices

and true equilibrium prices as calculated by our benchmark method: e k = ‖p k
c ,t − p ∗c ,t ‖1 . As e k

constitutes a summary statistic which is defined over the entire model horizon, it says little about

whether price deviations of the computed from the true price path lie within a tolerable band-

width. As a second measure, we therefore report the maximum distance error τk which is defined

as: τk =max{|p k
c ,t −p ∗c ,t |}.

Figure 10 plots e k as a function of the number of iterations. The approximation error quickly

decreases and then converges to zero. After the first few iterations our decomposition technique

only involves refinements of the demand system, and consequently, subsequent changes in rela-

tive prices are small.

14 Kehoe and Levine [1985] have shown that the OLG framework may permit multiple equilibria for certain parameter
values. In such cases, indeterminacy would manifest itself as sensitivity to the truncation date. None of the mod-
els presented here are sensitive to T, provided that it is sufficiently large. This and the general robustness of the
models provide evidence that the equilibria are unique. Kotlikoff [2000] reaches the same conclusion regarding the
uniqueness of equilibria in the OLG models he has been working with.
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4.3.2 Robustness and accuracy

In order to explore the capacity of our algorithm to solve large-scale OLG models, we examine

its performance for a different number of household types and various degrees of intra-cohort

heterogeneity. We look again at the effects of the tax reform scenario as described above. Given our

simple specification for the source of intra-cohort differences, we vary the extent of heterogeneity,
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TABLE 1: CONVERGENCE PERFORMANCE AND APPROXIMATION ERROR

H Number of iterations Approx. error e k Max. distance τk CPU computing

(Γ= Γ1) (last iteration) (last iteration) time

1 37 10−6 10−7 0 min 13 s (3.78)

10 36 0.002 10−4 0 min 21 s (1.17)

50 35 0.005 10−4 1 min 10 s (0.18)

100 35 — — 2 min 06 s (× )

500 34 — — 6 min 14 s (× )

1000 34 — — 10 min 48 s (× )

2000 29 — — 30 min 31 s (× )

Note: Figures in parentheses denote running time of the decomposition algorithm expressed as a fraction of the
running time as required by our benchmark simultaneous solution method. A “×” indicates infeasibility of the
simultaneous solution method.

denoted by Γ, by changing the support for the distributions from whichσh and a g ,h are drawn.15

Table 1 reports results from a series of runs where the number of households within each gen-

eration is increased while holding fixed the degree of intra-cohort heterogeneity. The quality of

approximation is excellent (τk is around 10−4). As the number of household types increases, our

proposed decomposition procedure become advantageous.16 Most importantly, it is shown that

our algorithm can provide improvements in robustness as compared to the benchmark simultane-

ous solution method which quickly becomes infeasible for models in which H ≥ 100.

To examine the performance of our algorithm in the presence of a substantial degree of het-

erogeneity among households, we report results for different configurations of Γ. We set H =

50 so that the benchmark solution method is feasible and the calculation of approximation er-

rors is available. Not surprisingly, the approximation quality of our method is decreasing with

the degree of heterogeneity. Overall, the quality of approximation is still very good: computed

prices fall within a reasonably small interval around the true equilibrium price path (τk is around

10−5−10−3).

Motivated by the discussion of the potential convergence failure of the SR algorithm in the

presence of significant income effects (Section 3), we conduct a number of sensitivity analyses

for behavioral parameters governing intra-period and intertemporal substitution/income effects

15 We consider the following sets of choices for
"
(σ,σ), (a , a )

#
ordered by their implied degree of heterogeneity:

Γ1 = {(1.00, 1.50), (0.2, 0.3)}, Γ2 = {(1.00, 1.50), (0.2, 0.4)}, Γ3 = {(0.25, 0.75), (0.2, 0.3)}, Γ4 = {(0.25, 0.75), (0.2, 0.4)},
Γ5 = {(0.25, 1.25), (0.2, 0.3)}, Γ6 = {(0.25, 1.25), (0.2, 0.4)}, Γ7 = {(0.25, 2.00), (0.2, 0.3)}, Γ8 = {(0.25, 2.00), (0.2, 0.4)}.

16 All reported running times refer to an implementation on a Dual Core 2 GHz processor machine.
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TABLE 2: APPROXIMATION ERRORS FOR DIFFERENT Γ

Γ Number of iterations Approx. error e k Max. distance τk CPU computing

(H = 50) (last iteration) (last iteration) time

Γ1 35 0.005 10−4 1 min 10 s (0.18)

Γ2 35 0.005 10−4 0 min 56 s (1.14)

Γ3 79 0.001 10−5 2 min 14 s (0.39)

Γ4 74 0.004 10−4 2 min 23 s (0.42)

Γ5 58 0.005 10−4 6 min 14 s (0.29)

Γ6 55 0.011 10−3 1 min 44 s (0.26)

Γ7 41 0.011 10−3 1 min 10 s (0.18)

Γ8 37 0.021 10−3 1 min 15 s (0.22)

Note: Figures in parentheses denote running time of the decomposition algorithm expressed as a fraction of the

running time as required by our benchmark simultaneous solution method.

TABLE 3: CONVERGENCE BEHAVIOR IN THE PRESENCE OF STRONG INCOME EFFECTS

ν , α Number of iterations Approx. error e k Max. distance τk CPU computing

(H = 50) (last iteration) (last iteration) time

0.50 , 0.80 33 0.015 10−3 1 min 06 s (0.17)

0.25 , 0.80 30 0.035 10−3 1 min 05 s (0.18)

0.80 , 0.50 42 0.014 0.013 1 min 27 s (0.19)

0.80 , 0.25 53 0.042 0.037 1 min 33 s (0.25)

0.50 , 0.50 42 0.117 0.011 1 min 15 s (0.23)

0.25 , 0.25 47 0.171 0.015 1 min 42 s (0.25)

Note: Figures in parentheses denote running time of the decomposition algorithm expressed as a fraction of the

running time as required by our benchmark simultaneous solution method.

(see Table 3). Looking first at the intra-period dimension, we find that combinations of too small ν

and α can pose serious problems for our decomposition approach. Although the search process is

terminated within a modest number of iterations, both approximation measures indicate a rather

poor quality of approximation for α≤ 0.5. If α is small, the quantity of labor supplied is relatively

insensitive to price changes which also means that income changes are more easily tolerated.

As for the role of intertemporal income effects, we do not experience problems of convergence

or a poor quality of approximation (results not shown). However, the speed of convergence (in

terms of the number of iterations required for convergence) is the slower, the larger is σh . This
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finding indicates that income effects stemming from an intertemporal reallocation of resources

do not cause problems of convergence.

4.3.3 Dynamically inefficient equilibria

Lastly, we want to emphasize that our decomposition method is inadequate for approximating

equilibria in OLG economies that are generically Pareto-inferior, i.e. models in which the econ-

omy’s growth rate exceeds the real interest rate (see, e.g., Diamond [1965] and Phelps [1961]). For

the given model, this corresponds to a situation where population growth dominates discounting.

In such circumstances there is no social planner’s problem which “lines up” with the OLG demand

system. Whether this significantly limits the relevance and scope of our approach is an empirical

question. Empirical evidence suggests that the incapacity of our method to deal with dynamically

inefficient equilibria is of minor practical significance.17

5 Concluding remarks

This paper develops a decomposition approach which can be applied to solve high-dimensional

static and dynamic general equilibrium models with many households. We demonstrate its ef-

fectiveness for computing equilibria in high-dimensional OLG models which are infeasible for

conventional simultaneous/direct methods. We find that the proposed algorithm provides an effi-

cient and robust way to approximate general equilibrium in models with a large number of hetero-

geneous agents if income effects remain sufficiently weak. The appropriateness of our solution

method therefore depends on the characteristics of the underlying model and the nature of the

implemented policy shock.

We believe that our approach can be beneficial for a wide range of economic applications.

In particular, it is advantageous for modeling tasks which necessitate to economize on the di-

mensionality of the corresponding numerical problem. Potential applications may include multi-

country and multi-sectoral OLG models, and analyses of relevant policy issues —such as, e.g.,

population aging, trade policy, and poverty— which require detailed account of the distributional

17 Abel, Mankiw, Summers, and Zeckhauser [1989] find that for the US economy the condition for dynamic efficiency
seems to be satisfied in practice. Similarly, under the weak assumption that rates of return are ergodic, Barbie,
Hagedorn, and Kaul [2004] reach the conclusion that the US economy does not overaccumulate capital. By means
of numerical analysis, Larch [1993] suggests that in the Auerbach-Kotlikoff framework rather implausible values
of the pure rate of time preference, the intertemporal elasticity of substitution or the population growth rate are
required to obtain non Pareto-optimal market solutions.
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effects on a household level while at the same time taking into account general equilibrium ef-

fects. Moreover, our decomposition approach may prove useful for the further development of

fully-integrated static and dynamic microsimulation models that incorporate the essential micro-

macro linkages required for a comprehensive policy analysis.

Appendix

In order to facilitate the description of the algorithm and to clarify the algebraic forms used in the

associated computer programs, this appendix reviews some fundamental aspects of calibration

which underly most CGE models.

CES preferences

Calibration refers to the process of selecting values of model parameters which ensure that the

model’s reference equilibrium is consistent with given data. Such data are typically obtained in

the form of a social accounting matrix for a given base year. CGE models are based on paramet-

ric forms which describe technology and preferences. The most common functional form used

in empirical applications is the constant-elasticity-of-substitution (CES) function. A CES utility

function can be written as:

U (C) =

�
n∑

i=1

αi C
ρ
i

�1/ρ

(A-1)

where C denotes the vector of consumption goods Ci , i = 1, . . . , n . There are n + 1 parameters in

this function, with n share parameters αi > 0 and a curvature parameter ρ. The latter is related to

the Allen-Uzawa elasticity of substitutionσ as: ρ = 1−1/σ with ρ < 1 andσ> 0.

Consumers in CGE models are typically modeled as budget constrained utility-maximizers, so

a model would incorporate the following behavioral subproblem:

maxc1,...,cn U (C)

s.t.
∑n

i=1 pi Ci =M (A-2)

where pi is the price of consumption good i , and M is consumer income. We can solve the con-

sumer problem in closed-form, obtaining demand functions:

Ci (p, M ) =
ασi M p−σi∑

i ′ α
σ
i ′ p

1−σ
i ′

(A-3)
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where p denotes the price vector, and i �= i ′. The calibration of preferences involves inverting this

demand function to express the function parameters in terms of an observed set of prices and

demands. If a consumer chooses to consume quantities C i when commodity prices are p i , we

may conclude that the share parameters must be given by:

αi =λp i C
1−ρ
i (A-4)

where λ> 0 is an arbitrary scale factor18, and the elasticity parameter, ρ, is exogenously specified.

We tend to think of the share and scale parameters as calibrated values, determined by an agent’s

observed choices in a reference equilibrium, whereas the elasticity parameters are “free parame-

ters” which are typically drawn from econometric estimates of the responsiveness of demand or

supply to changes in relative prices. In traditional applied general equilibrium models, the refer-

ence quantities C i and prices p i are based on a benchmark equilibrium data set.

The calibrated share form

In applied work it may be convenient to work with a different yet equivalent form of the CES utility

function [Rutherford, 1995a]. The calibrated share form is based on the observed quantities, prices

and budget shares. In computational applications the calibrated form is preferable because it pro-

vides a simple parameter and functional check that is independent from second-order curvature.

Normalizing the benchmark utility index to unity, the utility function can be written as:

U (C) =

⎡⎣∑
i

θi

$
Ci

C i

%ρ⎤⎦1/ρ

(A-5)

in which we define:

θi =
p i C i∑
i ′ p i ′C i ′

(A-6)

as the benchmark value share of good i . We can similarly express the unit expenditure function

as:

e (p) =

⎡⎣∑
i

θi

$
pi

p i

%1−σ⎤⎦1/1−σ
, (A-7)

the indirect utility function as:

V (p, M ) =
M

e (p)M
, (A-8)

18 The consumer maximization problem is invariant with respect to positive scaling of U , hence the share parameters
may only be determined up to a scale factor.
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and by Roy’s identity the demand function as:

Ci (p, M ) =C i
M

e (p)M

�
e (p)p i

pi

�σ
(A-9)

where M =
∑

i p i C i .

We can think of the demand function given here as a second-order Taylor approximation to the

“true” demand function based on an observation of the true function at the reference point. At that

point, C i corresponds to a “zeroth order approximation” to the utility function, p i corresponds to

the “first order approximation”, and the “free parameter”σ controls the second (and higher) order

properties of preferences. The benchmark prices correspond to the marginal rate of substitution

—the slope of the indifference curve— at C . As long as one remains in the neighborhood of p, the

elasticity parameter σ only plays a minor role, and calibrated demand is determined largely by C

and p.

References

ABEL, A. B., G. N. MANKIW, L. H. SUMMERS, AND R. J. ZECKHAUSER (1989): “Assessing dynamic inefficiency:

theory and evidence,” Review of Economic Studies, 56, 1–20.

ARNTZ, M., S. BOETERS, N. GURTZGEN, AND S. SCHUBERT (2006): “Analysing welfare reform in a

microsimulation-AGE model: the value of disaggregation,” Discussion Paper No. 06-076, Centre for Euro-

pean Economic Research.

AUERBACH, A., AND L. KOTLIKOFF (1987): Dynamic Fiscal Policy. Cambridge University Press.

BARBIE, M., M. HAGEDORN, AND A. KAUL (2004): “Assessing aggregate tests of efficiency for dynamic

economies,” Topics in Macroeconomics, 4(1), Article 16.

BOURGUIGNON, F., A.-S. ROBILLIARD, AND S. ROBINSON (2005): “Representative versus real households in the

macroeconomic modeling of inequality,” in Frontiers in Applied General Equilibrium Modeling, ed. by

T. J. Kehoe, T. N. Srinivasan, and J. Whalley. Cambridge University Press.

BOURGUIGNON, F., AND A. SPADARO (2006): “Microsimulation as a tool for evaluating redistribution policies,”

Journal of Economic Inequality, 4(1), 77–106.

COCKBURN, J., AND C. B. CORORATONA (2007): “Trade reform and poverty—Lessons from the Philippines: A

CGE-microsimulation analysis,” Journal of Policy Modeling, 29(1), 141–163.

CONESA, J. C., AND D. KRUEGER (1999): “Social security with heterogeneous agents,” Review of Economic

Dynamics, 2(4), 757–795.

DIAMOND, P. A. (1965): “National debt in a neoclassical growth model,” American Economic Review, 55, 1126–

1150.

DIXON, P. J. (1975): The theory of joint maximization. North-Holland.

FEHR, H. (2000): “Pension reform during the demographic transition,” Scandinavian Journal of Economics,

102(3), 419–443.

HUGGETT, M., AND G. VENTURA (1999): “On the distributional effects of social security reform,” Review of

Economic Dynamics, 2, 498–531.

35



JENSEN, S. E. H., AND T. F. RUTHERFORD (2002): “Distributional effects of fiscal consolidation,” Scandinavian

Journal of Economics, 104(3), 471–493.

KEHOE, T. J., AND D. K. LEVINE (1985): “Comparative statics and perfect foresight in infinite horizon

economies,” Econometrica, 53(2), 433–493.

KOTLIKOFF, L. (2000): “The A-K OLG model: its past present and future,” in Using dynamic general equilib-

rium models for policy analysis, ed. by W. Glenn, S. Jensen, L. Pedersen, and T. Rutherford. North-Holland,

Amsterdam.

KOTLIKOFF, L., K. SMETTERS, AND J. WALLISER (1999): “Privatizing social security in the United States: compar-

ing the options,” Review of Economic Dynamics, 2(3), 532–574.

LARCH, M. (1993): “Dynamically inefficient equilibria in the Auerbach-Kotlikoff model,” Empirical Eco-

nomics, 18, 159–172.

LAU, M. I., A. PAHLKE, AND T. F. RUTHERFORD (2002): “Approximating infinite-horizon models in a comple-

mentarity format: a primer in dynamic general equilibrium analysis,” Journal of Economic Dynamics

and Control, 26, 577–609.

MATHIESEN, L. (1985): “Computation of economic equilibria by a sequence of linear complementarity prob-

lems,” Mathematical Programming Study, 23, 144–162.

NEGISHI, T. (1960): “Welfare economics and existence of an equilibrium for a competitive economy,” Metroe-

conomica, 12, 92–97.

PHELPS, E. S. (1961): “The Golden rule of accumulation: a fable for growthmen,” American Economic Review,

51, 638–641.

RASMUSSEN, T. N., AND T. F. RUTHERFORD (2004): “Modeling overlapping generations in a complementarity

format,” Journal of Economic Dynamics and Control, 28, 1383–1409.

RIOS-RULL, J. (1995): “Models with heterogeneous agents,” in Frontiers of Business Cycle Research, ed. by T. F.

Cooley. Princeton University Press, Princeton, NJ.

RUTHERFORD, T. F. (1995a): “CES preferences and technology: a pratical introduction,” mimeo, University of

Colorado.

(1995b): “Extension of GAMS for complementarity problems arising in applied economics,” Journal

of Economic Dynamics and Control, 19(8), 1299–1324.

(1999): “Sequential joint maximization,” in Energy and Environmental Policy Modeling, ed. by

J. Weyant, vol. 18 of International Series in Operations Research and Management Science. Kluwer.

RUTHERFORD, T. F., D. TARR, AND O. SHEPOTYLO (2005): “Poverty Effects of Russia’s WTO Accession: modeling

“real" households and endogenous productivity effects,” World Bank Policy Research Working Paper 3473.

SAVARD, L. (2003): “Poverty and income distribution in a CGE-household micro-simulation model: top-

down/bottom up approach,” unpublished, available at: http://ssrn.com/abstract=485665.

(2005): “Poverty and inequality analysis within a CGE framework: a comparative analysis of the

representative agent and microsimulation approaches,” Development Policy Review, 23(3), 313–331.

SCARF, H. (1960): “Some examples of global instability of the competitive equilibrium,” International Eco-

nomic Review, 1(3), 157–171.

TOWNSEND, R. M. (2002): “Safety nets and financial institutions in the Asian crisis: the alloca-

tion of within-country risk,” International Monetary Fund. Prepared for the IMF Conference on

Macroeconomic Policies and Poverty Reduction, March 14-15, Washington, D.C., available at:

http://cier.uchicago.edu/papers/papers.htm.

TOWNSEND, R. M., AND K. UEDA (2003): “Financial deepening, inequality, and growth: a model-based quanti-

36



tative evaluation,” IMF Working Paper 03-193. International Monetary Fund, Washington, D.C., available

at: www.imf.org/external/pubs/ft/wp/2003/wp03193.pdf.

VENTURA, G. (1999): “Flat tax reform: A quantitative exploration,” Journal of Economic Dynamics and Con-

trol, 23, 1424–1458.

37


