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An Instrumental Variable Approach

Abstract

Using household travel diary data collected in Germany between 1997 and 2012, we 
employ an instrumental variable (IV) approach to estimate fuel price and effi  ciency 
elasticities. The aim is to gauge the relative impacts of fuel economy standards and 
fuel taxes on distance traveled. We fi nd that the magnitudes of the elasticity estimates 
are statistically indistinguishable: higher fuel prices reduce driving by the same degree 
as higher fuel effi  ciency increases driving. This fi nding indicates an off setting eff ect of 
fuel effi  ciency standards on the eff ectiveness of fuel taxation, calling into question the 
effi  cacy of the European Commission’s current eff orts to legislate CO2 emissions limits 
for new cars given prevailing high fuel taxes.
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1 Introduction

Until a few years ago, the United States and the European Union pursued markedly

different policies to contain emissions from automobile transport, with the US rely-

ing on the corporate average fuel economy (CAFE) standards and the EU relying on

fuel taxation. These policies began to converge in April 2009 when the European Com-

mission passed legislation requiring automakers to reduce the average per-kilometer

carbon dioxide (CO2) emissions of newly registered automobiles to 130g/km by 2015

(EC, 2009). The new law marked the end of a 10-year period in which the fuel econo-

my of the new car fleet in Europe increased substantially, rising nearly 20% from 33.5

miles per gallon (mpg) in 2000 to 41.1 mpg in 2009 (ODYSSEE, 2012). In the US, the sa-

me time interval saw an increase in fuel efficiency that was considerably more modest,

rising 10% from 22.4 to 24.8 mpg (EPA, 2012). Of course, such a comparison does not

unequivocally point to the superiority of one policy instrument over the other, but it

does raise the question of whether the EU’s coupling of an efficiency standard with a

system of high fuel taxes – one within which the efficiency of the car fleet has risen

relatively rapidly – makes economic sense.

According to a press release published by the Commission in 2007, the CO2 limits

in the new legislation would “reduce the average emissions of CO2 from new passen-

ger cars in the EU from around 160 grams per kilometer to 130 grams per kilometer”,

which would “translate into a 19% reduction of CO2 emissions” (EC, 2007). But whe-

ther a CO2 reduction of this magnitude in fact materializes depends fundamentally on

the behavioral response of motorists to increased efficiency. Presuming that mobility is

a conventional good, a decrease in the cost of driving due to an improvement in fuel

efficiency would result in an increased demand for car travel. This demand increase is

referred to as the rebound effect (KHAZZOOM, 1980), as it offsets – at least partially –

the reduction in energy demand that would otherwise result from an increase in effi-

ciency. Though the existence of the rebound effect is widely accepted, its magnitude

remains a contentious issue (e. g. BROOKES, 2000; BINSWANGER, 2001; SORRELL and

DIMITROUPOULOS, 2008).
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Proponents of increased efficincy standards generally play down the magnitu-

de of the rebound effect, arguing that the standards not only decrease dependence on

imported oil and CO2 emissions, but also reduce motorists’ fuel expenses. Opponents

argue that standards are a costly way to reduce gasoline consumption because, unlike a

fuel tax, they fail to harness price signals (AUSTIN and DINAN, 2005; CRANDALL, 1992;

KARPLUS et al. , 2013; KLEIT, 2004; MANKIW, 2013). This paper scrutinizes both view-

points by using detailed household travel diary data collected in Germany between

1997 and 2012 to econometrically estimate both fuel price and efficiency elasticities

and thereby gauge the relative impacts of fuel economy standards and fuel taxes on

distance traveled.

Germany provides an interesting case study of this question because despite ha-

ving one of the highest car ownership rates in Europe, the country has reduced emissi-

ons from transport by 6% between 1990 and 2009, thereby bucking the 27% increase in

transport emissions in the EU as a whole (EEA, 2011a). One contributing factor to this

reduction has been high fuel taxes, whose rates of 65.45 cents per liter for petrol and

47.07 cents per liter for diesel are among the highest in the EU. These high taxes result

in high prices at the pump: An average German driver pays roughly double the price

per gallon of fuel as a US driver.

An immediate challenge in econometrically estimating the rebound effect is en-

dogeneity bias. Contrasting with fuel prices, which can generally be regarded as exo-

genous to households, fuel efficiency is potentially endogenous owing to unobserved

household characteristics that affect both the decision on the annual distance driven

and the fuel economy of the vehicle when it is purchased. Unobserved environmental

preferences, for example, may trigger the purchase of a car with a high fuel efficiency,

but may also lead to low annual driving distances. These characteristics may therefore

be correlated with regressors capturing fuel efficiency. Moreover, simultaneity biases

may result from the fact that drivers who are prepared to drive longer distances, be-

cause of a job change, for instance, may tend to purchase more fuel-efficient cars.

Two features of our approach ameliorate these potential problems. First, the panel
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dimension of our data allows the inclusion of fixed effects to control for the influence

of unobserved heterogeneity that stays fixed over time. We additionally address the

endogeneity of fuel efficiency by employing motor vehicle tax rates per 100 cm3 cubic

capacity as an instrumental variable (IV). Other IVs are also explored, specifically the

fuel prices at the time of the purchase of the vehicle and the average CO2 emission

per kilometer of the fleet of the car manufacturer, but the evidence suggests these to

be very weakly correlated with the variable to be instrumented, rendering them weak

instruments.

Two main results emerge from our analysis. First, the rebound estimates obtained

here for single-vehicle households are in the range of 44 to 71%, which is relatively

large compared with evidence from the U.S. , but perfectly in line with earlier German

studies (e.g. FRONDEL, RITTER, and VANCE, 2012; and FRONDEL and VANCE, 2013). As

these studies do not instrument for efficiency, but rather rely on fuel price elasticities

to infer the size of the rebound effect, they cannot formally test whether the response

to increased efficieincy is equal in magnitude to the response to increased fuel prices.

In this regard, our second key finding is that the magnitudes of the price and elasticity

efficiencies are statistically indistinguishable: Higher fuel prices reduce driving by the

same degree as higher fuel efficiency increases driving, suggesting an offsetting effect

of fuel efficiency standards on the effectiveness of fuel taxation.

The following section provides for a concise description of the panel data set.

Section 3 offers a concise overview of the common definitions of the direct rebound

effect and motivates our choice of definitions for estimation purposes, followed by a

description of the estimation method. The presentation and interpretation of the results

is given in Section 4. The last section summarizes and concludes.

2 Data

The data used in this research is drawn from the German Mobility Panel (MOP 2013)

and covers sixteen years, spanning 1997 through 2012 (see FRONDEL, PETERS, and
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VANCE (2008) for more details on this survey). By focusing on single-car households,

we abstract from complexities associated with the substitution between cars in multi-

vehicle households, thereby obtaining results that are comparable to our former stu-

dies. The resulting estimation sample comprises a total of 2,596 observations covering

1,124 households.

Travel survey information, which is recorded at the level of the automobile, is

used to derive the dependent and explanatory variables. The dependent variable is

given by the total monthly distance driven in kilometers (Table 1). Corresponding to

alternate definitions of the rebound effect, elaborated below, the key explanatory varia-

bles for identifying the direct rebound effect are efficiency μ and the real price p paid

for fuel per liter.1

Given an average efficiency of μd = 15.4 kilometers per liter for diesel cars versus

μp = 12.5 kilometers per liter for petrol cars, the well-known fact that the efficiency

of diesel cars is substantially higher than that of comparable petrol cars is confirmed

by the data. Furthermore, in Germany, diesel fuel is significantly cheaper per liter than

petrol due to a lower tax rate of diesel that is about 18 cent less per liter than that of

petrol fuel. These are the two major reasons for the fact that the average distance driven

is larger for diesel than for petrol cars. To control for potentially further differences

between diesel and petrol cars beyond those in fuel prices and fuel efficiencies, which

are already captured by the price and efficiency variables μ and p, respectively, we

include a diesel dummy as additional regressor.

The suite of additional control variables that are hypothesized to influence the

extent of motorized travel encompass, among others, the demographic composition of

the household, its income, the surrounding landscape pattern, and dummy variables

indicating whether any employed member of the household changed jobs in the prece-

ding year and whether the household undertook a vacation with the car in the year of

the survey. The descriptive statistics of the variables and their definitions are presented

1The price series was deflated using a consumer price index for Germany obtained from DESTATIS

(2012).
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in Table 1.

Table 1: Variable Definitions and Descriptive Statistics

Variable Name Variable Definition Mean Std. Dev.

s Monthly kilometers driven 1,119 686

sd Monthly kilometers driven with a diesel car 1,579 839

sp Monthly kilometers driven with a petrol car 1,011 595

μ Fuel efficiency in kilometers per liter 13.1 2.9

μd Efficiency of diesel cars in kilometers per liter 15.4 3.0

μp Efficiency of petrol cars in kilometers per liter 12.5 2.6

p Real fuel price in e per liter 1.18 0.15

pd Real diesel price in e per liter 1.01 0.15

pp Real petrol price in e per liter 1.14 0.14

diesel car Dummy: 1 if the car is a diesel 0.19 –

tax rate motor vehicle tax rate per 100 cm3

in e per year 6.66 3.22

# children Number of children younger
than 18 in the household 0.26 0.62

# employed Number of employed household members 0.75 0.78

income Real Household income in 1,000 e 2.27 0.79

# high school diploma Number of household members with
a high school diploma 0.62 0.74

job change Dummy: 1 if an employed household member
changed jobs within the preceding year 0.09 –

vacation with car Dummy: 1 if household undertook
vacation with car during the survey period 0.22 –

urban area percentage of area classified as urban 0.19 0.18

(meshe f f )
−1 landscape fragmentation, see formula (1) 0.95 1.07

The two landscape measures, which are derived from satellite imagery for the

years 2000 and 2006 and linked with the MOP data using a Geographic Information

System, deserve brief elaboration. Urban area is measured as the percent of area clas-

sified in the imagery as urban in the zipcode within which the household resides. We
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hypothesize that households located in areas characterized by a larger share of urban

area are less dependent on the automobile because of the shorter travel distances se-

parating origin from destination for standard activities like shopping, recreation and

work. The second landscape metric is a measure of landscape pattern commonly used

in ecology:

meshe f f =
1

Atotal

n

∑
1

A2
i , (1)

where the subscript i indexes the patch and Ai measures its area. As described further

in JAEGER (2000), the effective mesh size defined by (1) provides a quantitative ex-

pression of landscape connectivity, one that has been widely implemented by various

European countries as an indicator for environmental monitoring (EEA, 2011b). In our

estimations we use the inverse of the effective mesh size, interpreted by ecologists as

a measure of landscape fragmentation. The sign of this variable is ambiguous. To the

extent that fragmented landscapes reflect a mix of uses, they may reduce car travel by

decreasing the distance between destinations serving different purposes. Conversely,

this variable may be positively associated with car travel given that highly fragmented

landscapes typically necessitate longer travel distances over circuitous routes.

3 Methodological Issues

Following SORRELL and DIMITROUPOULOS (2008), there are three conventional defini-

tions of the rebound effect:

Definition 1: ημ(s) := ∂ ln s
∂ ln μ , the elasticity of the demand for a particular energy

service in the amount of s with respect to energy efficiency μ,2

2In line with the economic literature (e. g. BINSWANGER, 2001:121), energy efficiency is defined here

by

μ =
s
e
> 0,

where the efficiency parameter μ characterizes the technology with which a service demand s is satis-

fied and e denotes the energy input employed for a service such as mobility. For the specific example

of individual conveyance, parameter μ designates fuel efficiency, which can be measured in terms of
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Definition 2: −ηps(s), the negative of the elasticity of service demand s with re-

spect to service price ps := pe/μ, which is proportional to the energy price pe for

given efficiency μ, and

Definition 3: −ηpe(e), the negative of the energy price elasticity of energy de-

mand e.

Definition 1 is the most natural definition of the direct rebound effect (BERKHOUT

et al., 2000), as, formally, the service demand response to energy efficiency changes is

described by the elasticity of service demand with respect to efficiency. However, due

to the likely endogeneity of energy efficiency (SORRELL, DIMITROUPOULOS, SOMMER-

VILLE, 2009:1361), FRONDEL, RITTER, and VANCE (2012) argue that none of these de-

finitions should be applied3 and instead suggest a fourth rebound definition that is

based on the negative of the energy price elasticity of service demand, ηpe(s):

Definition 4: − ηpe(s) = − ∂ ln s
∂ ln pe

. (2)

Although not plagued by potential endogeneity problems, Definition 4 nonethe-

less rests on a series of strong assumptions that have to be invoked to ensure that it

is equivalent to Definition 1. As elaborated by FRONDEL, RITTER, and VANCE (2012),

these assumptions are threefold: distance traveled s solely depends on ps, fuel prices

pe are exogenous, and energy efficiency μ is constant. As a consequence, while simul-

taneously identifying the rebound effect via Definition 4, here we focus on the most

natural Definition 1 of rebound effect and estimate the rebound employing IV methods

to cope with the endogeneity of μ.

vehicle kilometers per liter of fuel input. The efficiency definition reflects the fact that the higher the

efficiency μ of a given technology, the less energy e = s/μ is required for the provision of a service. The

above efficiency definition assumes proportionality between service level and energy input regardless

of the level – a simplifying assumption that may not be true in general, but provides for a convenient

first-order approximation of the relationship of s with respect to e.
3An extensive discussion on why Definitions 1-3 appear to be inappropriate for both theoretical and

empirical reasons can be found in FRONDEL, RITTER, and VANCE (2012).
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In line with this focus, we estimate the following model specification, where the

logged monthly vehicle-kilometers traveled, ln(s), is regressed on logged fuel prices,

ln(pe), logged fuel efficiency, ln(μ), and a vector of control variables x described in

detail in the previous section:

ln(sit) = α0 + αμ · ln(μit) + αpe · ln(peit) + αT
x · xit + ξi + νit . (3)

Subscripts i and t are used to denote the observation and time period, respectively.

ξi denotes an unknown individual-specific term, and νit is a random component that

varies over individuals and time. On the basis of this specification and Definition 1, the

rebound effect can be identified by an estimate of the coefficient αμ on the logged fuel

efficiency, whereas Definition 4 implies that, if equivalent to Definition 1, the rebound

effect can be obtained by the negative estimate of the coefficient αpe on the logged fuel

price.

To estimate the rebound effect via both definitions simultaneously requires an

IV approach in which at least one instrumental variable is employed for the likely

endogenous variable μ. For an IV approach to be a reasonable identification strat-

egy, any instrumental variable z is required to be correlated with fuel efficiency μ,

i. e. Cov(μ, z) �= 0 (Assumption 1), while it should not be correlated with the error term

ε: Cov(μ, ε) = 0 (Assumption 2), where the components of ε are given by εit := ξi + νit.

If either of these two identification assumptions is violated, employing z as an instru-

ment for μ is not a viable approach.

Our use of the tax rates per 100 cm3 cubic capacity would seem to fulfill these

requirements, although the second assumption is principally untestable. In Germany

and elsewhere in Europe, the declared aim of this lump-sum tax is to privilege cars

with low emissions. Hence, the tax rate, whose level depends on carbon dioxide emis-

sions, but is independent of annual driving distances, is negatively correlated with the

endogenous variable fuel efficiency, but uncorrelated with mileage. In theory, therefo-

re, the motor vehicle tax rate per 100 cm3 should be an appropriate instrument, as it

should not affect the dependent variable distance driven, nor the error term.
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Apart from motor vehicle tax rates per 100 cm3, we explored additional instru-

ments, such as fuel prices at the time of the purchase of the vehicle and other lagged

fuel prices, all of which turned out to be very weakly correlated with fuel efficiency in

terms of partial correlation coefficients. This leaves us with a single instrument for a

single endogenous variable, thereby obviating the need for over-identification tests. In

this just-identified case, alternative estimators, such as two-stage least squares (2SLS)

and the more general methods of moments estimator (GMM), reduce to the IV estima-

tor (CAMERON, TRIVEDI, 2009:174,175).

Although the IV estimates should be estimated from a one-stage regression to

obtain correct standard errors (WOOLDRIDGE, 2006:526), it is illuminating to concei-

ve the IV estimation as a two-stage estimation procedure. In the first stage of such a

two-stage (generalized) least squares (2SLS) panel estimation approach, the following

reduced form is estimated using ordinary fixed- or random-effects estimation methods:

ln(μit) = β0 + βpe · ln(peit) + βz · ln(zit) + βT
x · xit + ηit , (4)

where vector x includes the same control variables as in structural equation (3) and z is

called the excluded instrument, because z represents our single instrumental variable

tax rate that does not appear in (3). On the basis of the predictions ̂ln(μ) resulting from

the first-stage estimation, the IV estimates are obtained in a second stage by estimating

structural equation (3) using the predicted instead of the observed values of ln(μ). It

bears noting that performing a t- or an F test on the coefficient βz of the instrument z

in the first stage would allow for testing the validity of Assumption 1.

An important drawback of IV estimates is that the related standard errors are

likely to be larger than those of the OLS, fixed- or random effects estimates (BAUER,

FERTIG, SCHMIDT, 2009:327). That is, if a variable that is deemed to be endogenous

were actually to be exogenous, IV estimators would still be consistent, but less efficient

than the OLS, fixed- or random effects estimators. Moreover, if an instrument is only

weakly correlated with an endogenous regressor, the standard errors of IV estimators

are even much larger, so that the loss of precision will be severe. Even worse is that

with weak instruments, IV estimates are inconsistent and biased in the same direction
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as OLS estimates (CHAO and SWANSON, 2005). Most disconcertingly, as is pointed out

by BOUND, JAEGER, and BAKER (1993; 1995), when the excluded instruments are only

weakly correlated with the endogenous variables, the cure in form of the IV approach

can be worse than the disease resulting from biased and inconsistent OLS estimates.

Given these potential problems, it is reasonable to perform an endogeneity test that

examines whether a potentially endogenous variableis in fact exogenous, a question

we take up in the following section.

4 Empirical Results

To provide for a reference point for the results obtained from our IV approach, we esti-

mate structural model (3) using ordinary panel estimation methods, thereby ignoring

the endogeneity of the fuel efficiency variable. Starting with the fixed-effects estima-

tor, several features bear highlighting. First, noting from the discussion in Section 2

that, according to Definition 4, the rebound effect can be identified by the negative of

the coefficient of ln(pe), the relevant estimate suggests that some 44% of the potenti-

al energy savings due to an efficiency improvement is lost to increased driving (see

Table 2). In contrast, on the basis of Definition 1, which recurs on coefficient αμ, the

rebound effect is estimated to amount to about 71%. From a statistical point of view,

however, both rebound effects, irrespective of whether identified according to Definiti-

on 1 or Definition 4, are identical. In fact, at any conventional level, the null hypothesis

H0 : αpe = −αμ cannot be rejected, as the test statistic of F(1; 1, 123) = 3.75 is less than

the corresponding critical value of F(1; ∞) = 3.84 at the 5% significance level.

This finding confirms former results obtained by FRONDEL, PETERS, and VANCE

(2008) and FRONDEL and VANCE (2009). The equality of the size of the coefficients

αμ and αpe reflected by H0 is highly intuitive: for constant fuel prices pe, raising the

energy efficiency μ should have the same effect on the service price ps, and hence on

the distance traveled, as falling fuel prices pe given a constant energy efficiency μ. As

proponents of efficiency standards argue, a monetary benefit of the higher efficiency to
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motorists is decreased per kilometer costs of driving (EC, 2007). The results from the

ordinary fixed-effects estimates indicate that an immediate consequence of this benefit

is that motorists drive more.

Table 2: Fixed-Effects Estimation Results for Travel Demand of Single-Vehicle House-

holds.4

Ordinary IV Approach

Fixed Effects 1. Stage OLS IV Fixed Effects

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗ -0.438 (0.109) -0.033 (0.039) ∗∗ -0.439 (0.109)

ln(μ) ∗∗ 0.707 (0.092) – – 0.953 (0.543)

dieselfuel -0.180 (0.105) ∗∗ -0.442 (0.069) -0.231 (0.152)

# children -0.058 (0.031) -0.024 (0.016) 0.067 (0.037)

income 0.002 (0.026) -0.007 (0.009) 0.001 (0.026)

# employed 0.021 (0.030) -0.012 (0.010) 0.024 (0.031)

# high school diploma 0.024 (0.033) -0.005 (0.012) 0.022 (0.034)

job change 0.061 (0.035) ∗∗ 0.024 (0.013) 0.055 (0.038)

vacation with car ∗∗ 0.266 (0.028) ∗∗ 0.035 (0.009) ∗∗ 0.257 (0.033)

urban area ∗∗-0.931 (0.355) ∗∗ 0.133 (0.195) ∗∗ -0.961 (0.342)

(meshe f f )
−1 ∗∗-1.512 (0.369) -0.248 (0.171) ∗∗ -1.458 (0.340)

tax rate – – ∗∗-0.020 (0.004) – –

H0 : αpe = −αμ F(1; 1,123) = 3.75 – χ2(1) = 0.89

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Observations used for estimation: 2,596. Number of Households: 1,124.

With respect to the remaining fixed-effects estimates, it is perhaps not surprising

that many are statistically insignificant. This is clearly the result of very low variability

of time-persistent variables, such as the number of children or the number of employed

household members. Three exceptions are the car vacation dummy and the landscape

4To correct for the non-independence of repeated observations from the same households over the

years of the survey, observations are clustered at the level of the household, and the presented standard

errors are robust to this survey design feature.
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metrics measuring urban area and landscape fragmentation, the former two of which

have the expected positive and negative signs, respectively. The negative sign on the

measure for landscape fragmentation is consistent with the notion of mixed land uses

in reducing the need for travel.

Of course, interpretation of all the estimates from the ordinary fixed-effects re-

gression is subject to the caveat that they may be biased from the potential endogeneity

of μ. To explore this possibility, we follow WOOLDRIDGE (2006:532) in testing whether

the error term η of the first-stage equation explaining efficiency is correlated with the

error term ν of the structural equation. Although both η and ν cannot be observed, one

can employ the residuals of the first- and second-stage regressions and test whether

they are correlated. Alternatively, one can plug the residual η̂ as an additional regres-

sor into structural equation (3) and test its statistical significance. In fact, this is the es-

sential idea of the DURBIN-WU-HAUSMAN test for endogeneity (CAMERON, TRIVEDI,

2009:183). With a t statistic of 9.47 for the fixed-effects estimation using a cluster-robust

covariance estimator, this test clearly rejects the hypothesis that ln(μ) is exogenous.

While this outcome suggests the application of the IV-approach, the validity of

the approach depends on the strength of our instrument. An initial indication is given

by the highly significant coefficient estimate of the motor vehicle tax rate originating

from the first-stage regression in the middle column of Table 2. We obtain the expected

result that the tax rate is negatively correlated with the fuel efficiency of cars, reflec-

ting the intention of the legislator to privilege cars with low emissions and, hence,

high fuel efficiencies. A more formal gauge of the strength of the instrument is given

by the rule of thumb of STAIGER and STOCK (1997), according to which the F stati-

stic for the coefficient βz of the first-stage regression should exceed the threshold of

10 (BAUM, SCHAFFER, STILLMANN, 2007:490, MURRAY, 2006).5 With an F statistic of

F(1; 992) = 17.82 resulting from the first-stage estimation using a heteroskedasticity-

5This rule accounts for the fact that, as BOUND, JAEGER, and BAKER (1995), STAIGER and STOCK

(1997) and others have shown, the weak-instruments problem can arise even if the endogenous variables

and the excluded instruments are correlated at conventional significance levels of 5 and 1 % and the

researcher is using a large sample (BAUM, SCHAFFER, STILLMANN, 2007:489).
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robust covariance estimator, we reject the hypothesis that the second-stage equation is

weakly identified.6

Moreover, the IV approach is based on the assumption that the excluded instru-

ments affect the dependent variable only indirectly, through their correlations with

the included endogenous variables. Yet, if an excluded instrument exerts both direct

and indirect influences on the dependent variable, the exclusion restriction must be

rejected. This can be readily tested by including an excluded instrument as a regres-

sor in the structural equation. Upon adding our instrumental variable z, the tax ra-

te per 100 cm3, as an additional regressor to the structural model (3), for the fixed-

effects estimation, the resulting t statistics amounts to t = −0.46 when calculating

heteroscedasticity-robust standard errors (not presented). This results does not allow

for rejecting the hypothesis that z exerts no effect on the dependent variable, the log-

ged monthly vehicle-kilometers traveled. With random-effects estimations, we come

up with the same conclusion.

Turning to the IV regression in the final column, apart from the coefficient esti-

mate of the fuel efficiency variable, the estimates do not differ substantially from those

of the ordinary fixed-effects estimation. Specifically, the estimate of -0.439 on the fuel

price coefficient shows that the rebound effect identified via Definition 4 is virtual-

ly identical to the rebound estimate of 0.438 resulting from the ordinary fixed-effects

estimator.

Taking the drastic increase of the standard error of the instrumented variable μ

into account – a phenomenon that is rather typical for IV regressions –, the estimate

for αμ of 0.953 is not statistically different from the fixed-effects estimate of 0.707, nor

does the low chi-square statistic of χ2(1) = 0.89 indicate that the equal-size condition

given by H0 is violated. That said, although our instrument passes the test on weak

identification, the statistical insignificance of the αμ suggests that the IV approach is

6In our case of a single endogenous variable, the F statistic on βz resulting from the first-stage re-

gression (4) using a heteroskedasticity-robust covariance estimator is identical to the more general rk

statistic of KLEIBERGEN and PAAP (2006), which has to be employed if the assumption of independent

and identically distributed (i. i. d.) errors is invalid.
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not a successful strategy to identify the direct rebound effect on the basis of the most

natural Definition 1. This is particularly unfortunate, as this estimation strategy does

not hinge on the additional identification assumptions that are required by Definitions

2 to 4 (see Section 2).

A similar pattern of results emerges from the random-effects estimates in Table

3. While the IV estimate for αμ is not statistically different from zero, the IV estimate

of the rebound effect according to Definition 4 is fairly close to that of the ordinary

random-effects estimation, which in turn is almost identical to the rebound estimate of

59.8% resulting from Definition 1. Again, for the ordinary random-effects estimation,

the null hypothesis H0 : αpe = −αμ cannot be rejected, suggesting that from an empiri-

cal point of view, it is irrelevant whether the rebound effect is identified via Definition

1 or Definition 4.

A key reason for the high elasticities obtained across the models in Tables 2 and 3

might be that the elasticities from household-level data are generally larger than those

from aggregate time series data (WADUD, GRAHAM, NOLAND, 2010:65). It also bears

noting that much of the research on this topic, particularly that using household level

data, is drawn from the US, where elasticity estimates may be lower because of longer

driving distances and fewer alternative modes.

In sum, although the IV estimates related to efficiency μ are imprecisely estima-

ted, the other estimates of the rebound effect, which lie between 44 and 71%, are quite

close to the rebound range of 57 to 67% estimated by FRONDEL, PETERS, and VAN-

CE (2008) for the sub-sample of single-vehicle German households observed between

1997 and 2005 using ordinary panel estimation methods. The range of rebound effects

obtained here even fits better to that identified by FRONDEL and VANCE (2013), who

estimate rebound effects in the range of 46 to 70% for the sub-sample of single-vehicle

households observed between 1997 and 2009. With our ordinary panel estimations thus

confirming our former outcomes, we conclude that for IV estimations to be a sensible

identification strategy, it seems most likely that the number of observations has to be

drastically larger than in our case in order to improve the precision of the IV estimates
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of the fuel efficiency coefficient.

Table 3: Random-Effects Estimation Results for Travel Demand of Single-Vehicle Hou-

seholds.

Random Effects 1. Stage GLS IV Random Effects

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗ -0.573 (0.081) ∗∗-0.091 (0.029) ∗∗ -0.541 (0.086)

ln(μ) ∗∗ 0.598 (0.069) – – 0.188 (0.158)

dieselfuel ∗∗ 0.148 (0.048) ∗∗ 0.638 (0.025) ∗∗ 0.240 (0.052)

# children 0.018 (0.018) ∗-0.018 (0.008) 0.005 (0.023)

income ∗∗ 0.061 (0.018) ∗∗ -0.022 (0.006) ∗∗ 0.048 (0.018)

# employed ∗∗ 0.117 (0.018) -0.003 (0.006) ∗∗ 0.118 (0.019)

# high school diploma 0.030 (0.019) ∗0.014 (0.006) 0.036 (0.020)

job change ∗ 0.067 (0.033) ∗0.025 (0.011) ∗ 0.079 (0.032)

vacation with car ∗∗ 0.305 (0.024) ∗∗ 0.035 (0.007) ∗∗ 0.320 (0.023)

urban area ∗-0.231 (0.093) -0.046 (0.030) ∗∗ -0.241 (0.090)

(meshe f f )
−1 -0.136 (0.119) -0.067 (0.044) -0.146 (0.134)

tax rate – – ∗∗-0.030 (0.001) – –

H0 : αpe = −αμ χ2(1) = 0.06 – χ2(1) = 4.44

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Observations used for estimation: 2,596. Number of Households: 1,124.

5 Summary and Conclusion

Using detailed household travel diary data collected in Germany between 1997 and

2012 and an instrumental variable approach to deal with the endogeneity of fuel effi-

ciency, this article estimates fuel price and efficiency elasticities. The aim is to provide

a basis for assessing the policy impacts of both fuel taxes and fuel economy standards

on distance traveled, and in the process to generate an estimate of the direct rebound

effect, the behaviorally induced offset in the reduction of energy consumption followi-

ng efficiency improvements. While the IV approach does not provide for any further
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insights on the size of the rebound effect in individual mobility, most likely due to

the very ambitious data requirements of this approach, the estimates resulting from

our panel estimations range between 44 to 71% for single-car households, meaning

that between 44 to 71% of the potential energy saving from efficiency improvements

in Germany is lost to increased driving. We additionally find that the magnitude of

the rebound effect is statistically indistinguishable from that of the fuel price elastici-

ty, which suggests that efficiency standards offset the effects of reduced vehicle travel

from fuel taxes.

Taken together, these results call into question the effectiveness of both the Eu-

ropean Commission’s current emphasis on efficiency standards as a pollution control

instrument (FRONDEL, SCHMIDT, VANCE, 2011), as well as the U. S. corporate fuel eco-

nomy (CAFE) standards. While an assessment of welfare effects from fuel taxation and

efficiency standards extends beyond the scope of the present study, our findings com-

plement a long of line of simulation studies finding negative welfare impacts from fuel

efficiency standards. KARPLUS and colleagues’ (2013) recent estimates from a compu-

table general equilibrium model, for example, suggest that fuel efficiency standards

are at least six times more expensive than a tax on fuel, verifying other studies that

have found massive costs savings from fuel taxes relative to efficiency standards (e.g.

AUSTIN, DINAN, 2005; CRANDALL, 1992; KLEIT, 2004). That these studies all originate

from the US, where the responsiveness to fuel costs are likely to be low relative to other

parts of the globe BRONS et al. (2008), highlights the potential for even costlier welfare

consequences in the German context, a point warranting further investigation.

Notwithstanding the political advantages of efficiency standards, whose costs to

consumers and the economy are largely obscured, we would argue that the economic

logic in favor of standards is wanting given the large rebound effects identified in this

study. It is therefore regrettable that European policy-makers have proceeded down

this path. Our results suggest that the efficiency standards introduced with the 2009

legislation will blunt what had been a highly effective climate protection policy based

on fuel taxation.
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