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Dependence in Panel Quantile 
Regressions

Abstract
This paper argues that cross-sectional dependence (CSD) is an indicator of misspecification in panel 
quantile regression (QR) rather than just a nuisance that may be accounted for with panel-robust 
standard errors. This motivates the development of a novel test for panel QR misspecification 
based on detecting CSD. The test possesses a standard normal limiting distribution under joint 
N, T asymptotics with restrictions on the relative rate at which N and T go to infinity. A finite-
sample correction improves the applicability of the test for panels with larger N. An empirical 
application to housing markets illustrates the use of the proposed cross-sectional dependence test.
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1 Introduction

Compared to cross-sectional data, panel data analyses offer the opportunity to deal with

data issues such as unobserved heterogeneity. Similarly, typical difficulties arising in

time series contexts, say short samples and instabilities, may also be sidestepped in a

panel setup. Panel data however prompt specific challenges, of which cross-sectional error

dependence is among the more important ones. Cross-sectional dependence may arise

for various reasons, most prominently due to global shocks affecting several units at the

same time. The dramatic effects on the asymptotic and finite-sample properties of the

least-squares [LS] estimator and standard inferential procedures have been discussed in

the literature; see e.g. Andrews (2005). In particular, should the regressors correlate with

the global shocks, endogeneity is expected to bias the LS estimator. Even if endogeneity is

not an issue,1 the variances of the panel estimators are typically affected by the presence

of cross-sectional dependence. Therefore, detecting and accounting for cross-dependence

is a necessary step in panel data analyses. This step is by no means a secondary one;

see, for instance, Pesaran (2004), the survey of Chudik and Pesaran (2015) or Bai et al.

(2016) and references therein.

A strand of panel literature gaining momentum is dedicated to panel quantile regressions

[QR]; see, for instance, Koenker (2005, Section 8.7) or Chernozhukov et al. (2013). For

early applications of quantile panel data methods, see, among others, Abrevaya and Dahl

(2008); Kniesner et al. (2010); Gamper-Rabindran et al. (2010); Covas et al. (2014);

Binder and Coad (2015). More recently, Zhu et al. (2016) use panel QR to analyse the

impact of foreign direct investment (FDI), economic growth and energy consumption on

carbon emissions in five selected member countries in the Association of South East Asian

Nations; Martínez-Zarzoso et al. (2017) investigate whether aid for trade leads to greater

exports in recipient countries; Opoku and Aluko (2021) use it to analyse the heterogeneous

effect of industrialization on the environment; Baruník and C̆ech (2021) investigate how to

measure common risks in the tails of return distributions using panel QR, while Brownlees

and Souza (2021) and Nandi (2022) take a panel route to multi-country Growth-at-Risk.
1See Kapetanios, Serlenga, and Shin (Kapetanios et al.) for a recent test of factor exogeneity.
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On the theory side, the asymptotic analysis provided by Kato et al. (2012) emphasizes

the role of the relation between the time and cross-sectional dimensions of the panel.

Harding and Lamarche (2014) allow for a factor structure in the disturbances (see also

Pesaran, 2006 and Bai, 2009) where factors, loadings and regressors are not independent,

and propose a suitable IV estimator (see also Harding et al., 2020). Still, in spite of the

increased use and development of QR methods, the effect of cross-sectional dependence

in panel QR has to date not been fully explored yet.

This paper’s contribution to the literature is two-fold. First, we argue that cross-sectional

dependence is far less benign in QR than in LS regressions. Concretely, we show that

a factor structure in the errors may induce asymptotic bias in the panel QR slope pa-

rameter estimators even if the factors and loadings are independent of all other model

components – unlike LS under the same circumstances. The explanation for this per-

haps counter-intuitive finding is that the omitted factors shift the conditional quantile

of the idiosyncratic errors in a way that does depend on the regressors in general, and

thus have an indirect confounding effect on the panel QR estimator. In the LS regression

framework, only the standard errors are affected under such exogeneity scenarios, and

panel-robust standard errors (Arellano, 1987; Driscoll and Kraay, 1998) are widely used

in practice to deal with cross-correlation. However, QR counterparts of clustered stan-

dard errors (see Parente and Santos Silva, 2016; Yoon and Galvao, 2016) only account for

cross-sectional error dependence if cross-dependence does not induce asymptotic biases in

the slope coefficient’s estimators.

Second, we discuss ways of testing the null hypothesis of no cross-sectional error depen-

dence in panel QR models. Apart from their original use as detectors of cross-sectional

dependence (say in order to decide on whether to use the usual or panel-robust standard

errors), such procedures also play the important role of misspecification tests in panel QR.

In LS regression models, a factor structure of the errors only causes endogeneity bias if

the factors correlate with the regressors. Since, as we show here, biases may arise in panel

QR irrespective of any dependence between common error components and regressors, any

form of cross-dependence is therefore indicative of misspecification. A cross-dependence

test is not a replacement for standard specification procedures such as Hausman tests.
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The latter are however more demanding, requiring the existence of exogenous instruments

which may be costly to obtain. Therefore, detecting cross-sectional dependence is a rea-

sonable and convenient model check, and, in this sense, we provide a procedure which

complements standard specification tests. It should of course be emphasized that, when

cross-sectional dependence is found, one should resort to estimation methods accounting

for its presence; see e.g. Harding and Lamarche (2014) and Chen et al. (2021).

We proceed as follows. In Section 2, we illustrate the biasing effect of ignoring cross-

sectional dependence on fixed-effects panel QR; the effect appears even if factors and

loadings are strictly exogenous, which is in stark contrast to the LS case. Moreover, the

arguments extend to nonlinear GMM panel procedures, indicating that panel LS esti-

mation is rather the particular case where cross-dependence is benign under exogeneity

of the common error components. We then discuss in section 3 the adaptation of the

residual-based Breusch-Pagan test (Breusch and Pagan, 1980) of no cross-sectional de-

pendence to the QR framework of this paper, provide joint N, T asymptotics and propose

a finite-sample correction. The proposed cross-sectional dependence tests are valid for

panel QR estimators satisfying weak regularity conditions. Section 4 analyzes the finite-

sample properties of the new tests, and we illustrate our procedures in an application

to housing markets in Section 5. The final section concludes, and technical proofs of the

results stated throughout the paper are provided in an appendix, together with additional

empirical findings.

2 Effects of cross-sectional dependence

We are interested in the τth conditional quantile of yi,t and consider the “structural” model

yi,t = αi,τ + β′
τxi,t + ui,t,τ (1)
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where the subscript τ on the model parameters indicates that coefficients may change

across quantiles. The disturbances ui,t,τ have a factor structure such that,

ui,t,τ = λ′
i,τf t + εi,t,τ . (2)

Such common components may arise e.g. due to global shocks or even omitted variables.

The idiosyncratic errors εi,t,τ have zero τ -quantile conditionally on xj,s, ∀ j = 1, . . . , N

and s = 1, . . . , T . Factor models of this type have been recently discussed by Chen et al.

(2021); see also Tran et al. (2019) for a less parametric approach.

Irrespective of the concrete estimation method used, the asymptotic properties of the

estimators β̂τ of the slope coefficients in (1) rely on a correct model specification in which

the “aggregate” errors ui,t,τ have zero conditional τth quantile given the regressors xi,t.

This is, however, not guaranteed to occur in error models of the kind formulated in (2),

even if the unobserved variables f t are strictly exogenous.

To illustrate the fact that cross-dependence, as induced by the latent component f t, may

have unexpected effects in the panel QR in (1), let us focus on the simplest model with

one regressor and a scalar factor, whose impact, for simplicity, does not depend on the

quantile, λi,τ = λi, i.e.,

yi,t = αi,τ + βτxi,t + λift + εi,t,τ .

Furthermore, let {ft} be independent of {εi,t,τ}, {xi,t} and the fixed effects {αi,τ}. Just

to make the point, take εi,t,τ to be normal (conditionally on the regressors x) with mean

mi,t and variance σ2
i,t, and let ft be normal with mean m and variance σ2. Note that it

must hold that

mi,t + zτσi,t = 0

for the conditional τ -quantile of εi,t,τ to be zero, where zτ is the τ -quantile of the stan-

dard normal distribution. Clearly, the setup of this illustration is quite specific, if not

oversimplifying. At the same time it pinpoints the impact of cross-sectional dependence

in panel QR regressions with minimal technical effort.

Under these conditions, ui,t,τ is (conditionally) normal as well. Denote the corresponding
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conditional τ -quantile by qi,t,τ , which obtains as

qi,t,τ = mi,t +mλi + zτ

√
σ2
i,t + λ2iσ

2.

There is no omitted variable bias whenever this conditional quantile does not depend on

the regressor x. However, it holds that

qi,t,τ = mi,t + zτσi,t +mλi + zτ

(√
σ2
i,t + λ2iσ

2 − σi,t

)
= mλi + zτ

(√
σ2
i,t + λ2iσ

2 − σi,t

)
,

where we used the fact that mi,t + zτσi,t = 0. The first component, mλi, is absorbed into

the fixed effect αi,τ as long as m does not depend on x (which we excluded to make the

point). Should the second component of qi,t,τ also not depend on t, there is no omitted

variable bias, at least not in the slope coefficient estimators (the fixed effects are treated

here as nuisance parameters and any bias in the fixed effects estimators may thus be

ignored). Moreover, there is no bias in the slope coefficients whenever zτ = 0, i.e. for

median regressions in this example.

But, apart from the case zτ = 0, one may expect effects on the conditional quantile of the

ui,t,τ , when the εi,t,τ are systematically heteroskedastic. If conditional heteroskedasticity

is present, say σ2
i,t = σ2

i,t (xi,t), the conditional quantiles of the errors ui,t,τ ,

qi,t,τ = mλi + zτ

(√
σ2
i,t (xi,t) + λ2iσ

2 − σi,t (xi,t)
)
,

depend explicitly on xi,t, and the linear QR model yi,t = αi,τ+β
′
τxi,t+error is misspecified.

Effectively, one is dealing with an artificially induced nonlinear functional form, since the

data generating process is,

P
(
yi,t ≤ ci + βτxi,t + zτ

(√
σ2
i,t (xi,t) + λ2iσ

2 − σi,t (xi,t)
))

= τ.

At the same time, (1) specifies a linear model to be fitted, resulting in misspecification

bias.
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The resulting bias of the slope parameter estimators depends on the strength of the cross-

sectional dependence (as captured by the nonzero λi) and on the marginal distribution

of the regressors. Moreover, its magnitude is expected to be larger for more extreme

quantiles.

Remark 1. Such effects have been noticed before in a more restricted context: for

instance, quantile fixed effects regressions and quantile random effects regressions do not

estimate the same quantity (see e.g. the discussion in Galvao and Poirier, 2019). In a

similar vein, Hausman et al. (2021) discuss the estimation of QR models with measurement

errors in the dependent variable. Ultimately, the issue boils down to the quantile not being

a linear operator, unlike the expectation. ♢

Remark 2. One may obtain more concrete statements on the misspecification bias if

considering “small” loadings λi. Concretely, as λi → 0,

zτ

(√
σ2
i,t + λ2iσ

2 − σi,t

)
= zτ

λ2iσ
2

2σi,t (xi,t)
+ o

(
λ2i
)
,

so, assuming e.g. that σi,t (xi,t) = γ/xi,t with xi,t > 0 a.s. and λi = λ, we obtain errors

ui,t,τ having conditional quantile

qi,t,τ = mλi + zτ
λ2σ2

2γ
xi,t + o

(
λ2
)
,

which, under regularity conditions ensuring
√
NT -consistency of β̂τ , suggests that

β̂τ − βτ − zτ
λ2σ2

2γ
= o

(
λ2
)
+Op

(
1√
NT

)
.

The conclusion (with a different expression for the bias) arguably holds for more general

forms of heteroskedasticity and also for non-normal errors. For instance, should σi,t be

a function of time rather than depend on xi,t, cross-sectional dependence would induce a

time trend at the τth quantile. Furthermore, we note that already a magnitude order of

N−1/4T−1/4 for the loadings λi may lead to such (2nd-order) biases in the Gaussian case.

♢
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Remark 3. The same line of argumentation indicates that GMM panel estimators

based on moment conditions that are nonlinear in the errors are affected by cross-sectional

dependence in a similar manner. Finally, the effect of ignored dependence is expected to

be similar for nonlinear panel QR models, even if an exact quantification is more difficult

than in the presented linear panel QR example.

♢

It may be seen that the biasing effect of ignored cross-dependence is not specific to pooled

estimation, since the shift in the conditional error quantile would equally affect individual-

unit estimation, and in fact in a unit-specific way depending on the loadings λi. Relatedly,

we also note that ignored slope coefficient heterogeneity may induce cross-dependence too,

e.g. when regressors are cross-dependent themselves.

Summing up, detecting cross-sectional dependence in panel QR is of paramount impor-

tance in applied work. The following section discusses a test of no cross-sectional depen-

dence for specific use with panel QR.

3 Tests of cross-sectional dependence in panel QR

Should one observe the disturbances ui,t,τ directly, one may actually use any of the avail-

able tests for cross-sectional dependence. We shall build on the familiar Breusch-Pagan

[BP] test based on the sample correlations of all unique pairs (ui,t,τ , uj,t,τ ), i ̸= j.2 Then,

plugging in residuals for the unobserved regression errors is the natural way to proceed.

The classical BP test resorts to LS residuals; here, however, one should rather employ QR

residuals. This is because slope coefficients may well be quantile-specific, and we would

thus take into account the fact that cross-sectional dependence may have different effects

at different quantile levels. We consider pooled estimation first (allowing for fixed effects)
2 In the above Gaussian example, the BP test is a Lagrange multiplier test, so we may argue in its favor

using Gaussian quasi-likelihood arguments. Also, the BP test is readily implemented in many software

packages.
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and deal afterwards with slope parameter heterogeneity by means of individual-unit esti-

mation. In fact, we do not focus on a particular choice of panel QR estimators, but rather

require mild high-level assumptions on their convergence rates in a large-N large-T setup.

This allows for a flexible use of the proposed test of no cross-dependence in panel QR

practice.

We draw in the following on the large literature on tests for cross-sectional dependence

in LS panels boosted by the seminal paper of Pesaran (2004). Some of the technical

assumptions we make follow in fact this literature.

The proposed test statistic is constructed as follows:

1. Estimate a fixed-effects QR at the relevant quantile τ ,

yi,t = α̂i,τ + β̂
′
τxi,t + ûi,t,τ .

2. Compute the pairwise correlation coefficients of the residual series,

ρ̂ij,τ =

∑T
t=1

(
ûi,t,τ − ¯̂ui,τ

) (
ûj,t,τ − ¯̂uj,τ

)√∑T
t=1

(
ûi,t,τ − ¯̂ui,τ

)2∑T
t=1

(
ûj,t,τ − ¯̂uj,τ

)2 ,
where ¯̂ui,τ = T−1

∑T
t=1 ûi,t,τ .

Given that – unlike fixed-effects LS residuals – the QR residuals ûi,t,τ are not neces-

sarily centered at zero, with the mean depending on the quantile level τ , unit-wise

demeaning is necessary. This results in a slightly different statistic compared to the

original BP test.

3. The test statistic is then given as,

Tτ =
1√

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̂2ij,τ − 1

)
. (3)

Since the BP-type statistic in (3) aggregates squared cross-correlations, the test rejects

for large positive outcomes of Tτ . In the following, we show the limiting null distribution

of Tτ to be standard normal, regularity conditions provided:

9



Assumption 1 Under the null hypothesis, the errors follow the multiplicative component

structure ui,t,τ = σiϵi,t, where σi are positive constants bounded and bounded away from

0, and ϵi,t are independent of xi,t and iid across i and t with absolutely continuous pdf f

and unity variance.

The independence assumption for the errors under the null is quite common in the lit-

erature on testing for no cross-sectional dependence; see e.g. Baltagi et al. (2012). The

dependence on the quantile level τ enters the model via quantile-specific regression co-

efficients. The continuity requirement for the pdf f is specific to the QR literature and

allows, among others, for a characterization of the QR estimators. The assumption fur-

thermore allows for error variance heterogeneity in the cross-sectional dimension. The

unity variance requirement is a standard requirement for the standardized errors in the

case of the BP test. While we do not pursue the topic of error variance heterogeneity in

the time dimension here, we note that a robust version of the BP test following Halunga

et al. (2017) may be considered instead of the classical form in (3).

The τ -quantile of the disturbances ui,t,τ is given under the null hypothesis by σiqτ , with

qτ denoting the τ -quantile of ϵi,t; as usual, this may be incorporated into the fixed effects

αi to ensure identification of the slope coefficients. Under cross-sectional dependence, we

focus on sequences of local alternatives as follows.

Assumption 2 Under the alternative hypothesis, let ui,t,τ = σiϵi,t + λ′
i,τf t, where

1
T

∑T
t=1 f tf

′
t

p→ Σf > 0 as T → ∞ and λi,τ = T−1/4N−1/4ℓi,τ , with

N−2
∑N

i=1

∑N
j=i+1

(
ℓ′i,τΣfℓj,τ

)2 → c2τ <∞.

We note that such a local alternative corresponds to moderate cross-sectional dependence

in the sense of Bailey et al. (2016). Furthermore, note that we consider local alternatives in

N−1/4T−1/4-neighbourhoods of the null, and Section 2 argues that already such relatively

weak cross-dependence may lead to panel QR bias. Of course, the rates for the local power

follow from the structure of the test statistic. Finally, the loadings are not restricted to

be homogeneous across different quantile levels.
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Assumption 3 The regressors xi,t have uniformly bounded 8th order moments, and sat-

isfy 1
T

∑T
t=1 (xi,t − x̄i) (xi,t − x̄i)

′ p→ Σi uniformly in i = 1, . . . , N , with Σi positive defi-

nite matrices with eigenvalues uniformly bounded and bounded away from zero.

For the pooled fixed-effects QR estimator, we only require a high level representation.

Assumption 4 Let the following Bahadur-type representation hold under the null and

the local alternative as N, T → ∞,

√
NT

(
β̂τ − βτ

)
=

(
1

N

N∑
i=1

1

σi
f(qτ )Σi

)−1
1√
NT

N∑
i=1

T∑
t=1

(xi,t − x̄i)ψτ (ui,t,τ − σiqτ ) +RNT

(4)

where RNT = Op(1) and ψτ is the generalized sign function, ψτ (u) = τ − I(u < 0) with

I(·) the usual indicator function.

This is the Bahadur representation for a linear model; see Kato et al. (2012), which is

the consequence of the Assumptions 1 and 2. No explicit conditions at all are placed on

the estimators of the fixed effects α̂i,τ ; they are washed out from the cross-dependence

statistic when demeaning the residuals ûi,t,τ . Of course, consistency of β̂τ as implied by

Assumption 4 is often related to the behaviour α̂i,τ so in fact we do impose an implicit

condition on the fixed-effects estimator.

Assumption 4 implies under the null – and in the local alternative setup – that β̂τ −βτ =

Op

(
1/
√
NT

)
, where

√
NT is the usual convergence rate of pooled or fixed-effects slope

coefficient estimators. We note that RNT in (4) need not be centered at zero, so estimators

exhibiting 2nd order bias (as is the case in Remark 2) may be employed in our framework.

Even so, the behavior of RNT is not trivial (see Kato et al., 2012) and may require

additional restrictions on N and T . We only formulate high-level assumptions here to

allow for tractable analysis of the proposed cross-sectional dependence test.

We are now in a position to state the following proposition regarding the limit distribution

of the test statistic in (3) under the null and the considered local alternatives.

Proposition 1 Under Assumptions 1–4, as N, T → ∞ with N/T → 0, it holds that

Tτ
d→ N

(
c2τ , 1

)
11



where c2τ is as defined in Assumption 2.

Under the null (c2τ = 0), this collapses to the standard normal distribution and we may

therefore reject the null hypothesis of no cross-sectional dependence at asymptotic size α

if Tτ exceeds the 1− α quantile of the standard normal.

Plugging in estimates ûi,t,τ for the unobserved ui,t,τ has consequences on the finite-sample

behaviour of the BP test if N is moderately large or large relative to T . This is in fact the

case for LS residuals too, see e.g. Pesaran et al. (2008) and Baltagi et al. (2012). Since

rate restrictions are difficult to check in practice, we suggest a finite-sample refinement

based on an evaluation of vanishing components of Tτ . Concretely, it can be seen from the

proof of Proposition 1 (see Appendix B) that most finite-sample distortions are induced

by two asymptotically negligible terms (whose expectation is computed in the appendix),

and we suggest the use of the corrected statistic,

T̃τ = Tτ −
√
N (N − 1)

2T
− τ (1− τ)

f̂ 2(qτ )

√
N (N − 1)

T
. (5)

The unknown density f of the standardized disturbances at the τth quantile may be

estimated using the pooled standardized residuals under the null, ϵ̂i,t = ûi,t,τ/σ̂i, where

σ̂i =
√
T−1

∑T
t=1 (ûi,t,τ − ūi,τ )

2. Importantly, note that the residuals ûi,t,τ have approxi-

mately zero τth quantile by construction, such that one should estimate their density at

zero. In particular, we use a standard kernel density estimator [KDE] to this end. Also,

consistency α̂i,τ is required for this finite-sample correction. See Section 4 for recommen-

dations on the choice of bandwidth.

Remark 4. Under the imposed rate restriction N/T → 0, we have
√

N(N−1)

2T
→ 0, such

that T̃τ and Tτ are asymptotically equivalent. The first term of the proposed correction

is quite similar to that derived by Baltagi et al. (2012) for no error cross-correlation in

a classical fixed-effects homogeneous panel data model, and essentially offsets terms that

stem from demeaning the residuals. The second term is specific to the QR setup, and is

designed to capture some of the level-specific effects of the slope coefficient estimation. ♢
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If considering individual-unit estimation, we obtain the same limiting behavior if Assump-

tion 4 is modified, as in Assumption 5 below, to allow for individual-unit QR estimation.

Assumption 5 Let the following Bahadur representations hold as N, T → ∞,

√
T
(
β̂i,τ − βi,τ

)
=

(
1

σi
f(qτ )Σi

)−1
1√
T

T∑
t=1

(xi,t − x̄i)ψτ (ui,t,τ − σiqτ ) +RiT (6)

where there exists δ > 0 such that max1≤i≤N ∥RiT∥ = Op

(
N (δ+1)/2

)
.

We note that, given the moment restrictions on the regressors x, Assumption 5 implies

a uniform convergence rate of Op

(
Nδ/2

T 1/2

)
for β̂i,τ ; the individual-unit estimators β̂i,τ may

of course be
√
T -consistent.

The test statistic Tτ is modified so that the residuals ûi,t,τ are now obtained from individual

regressions, that is,

û
(i)
i,t,τ = yi,t − α̂i,τ − β̂

′
i,τxi,t.

The following proposition states a trade-off between the uniform convergence rate of the

unit-specific slope coefficient estimators (as characterized by δ in Assumption 5) and the

dimensions of the panel: in a nutshell, the more estimation noise, the less cross-sectional

units are allowed for in order to obtain a standard normal limiting distribution of the test

statistics.

Proposition 2 Under Assumptions 1–3 and 5, as N, T → ∞ such that N1+2δ

T
→ 0, it

holds that

T (i)
τ

d→ N
(
c2τ , 1

)
where c2τ is as defined in Assumption 2.

When δ = 0 (which is in a sense closest to homogeneity in the unit-specific estimation

setup), one recovers the N = o(T ) rate from Proposition 1.

The correction proposed in Eq. (5) may be used equally well for T (i)
τ , and we denote the

corrected statistic based on individual-estimation residuals by T̃ (i)
τ .
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To conclude this section, we consider a simple portmanteau test for no cross-sectional

dependence at several different quantiles, τ1, . . . , τK . We focus again on the statistics

with finite-sample correction, and let T̃τk (T̃ (i)
τk ) be the test statistics at quantile τk as in

(5). Assume that either Assumption 4 or Assumption 5 holds at each of the K quantiles

τk. The portmanteau statistic is then

M̃K =
1

K

K∑
k=1

T̃τk (7)

(M̃(i)
K = 1

K

∑K
k=1 T̃

(i)
τk ) and we again reject for test outcomes exceeding the 1−α quantile

of the standard normal distribution. Hence, the following proposition can be stated.

Proposition 3 Under the Assumptions of either Propositions 1 or 2, it holds under the

local alternative that

M̃K
d→ N

(
c̄2, 1

)
and

M̃(i)
K

d→ N
(
c̄2, 1

)
,

respectively, where c̄2 = 1
K

∑K
k=1 c

2
τk

with c2τk as defined in Assumption 2.

4 Finite-sample evidence

Building on Pesaran et al. (2008) and Moscone and Tosetti (2009) we follow the setup of

Demetrescu and Homm (2016) and use the following data generating process:

yi,t = αi + β1x1,i,t + β2x2,i,t + ui,t,τ , i = 1, . . . , N, and t = 1, ..., T (8)

where β1 = β2 = 1. Moreover, we simulate regressors which, due to a factor structure,

are correlated across cross-sections,

xl,i,t = f
(x)
l,t γ

(x)
l,i + ϵ

(x)
l,i,t

14



where f
(x)
l,t ∼ iidN(0, 1) and ϵ

(x)
l,i,t ∼ iidN(0, 0.1). We set γ(x)l,i = 1, but one could

also consider, for example, γ(x)l,i ∼ iid U(−0.2, 0.2) with U(a, b) standing for a uniform

distribution on (a, b).3 Further, we consider αi ∼ iidN (1, 1). The quantiles of interest are

taken to be τ = {0.2, 0.5, 0.8}.

We consider two scenarios for generating errors. First, we generate ui,t,τ as,

ui,t,τ = ϵi,t + γ1,ϵf
(x)
1,t + γ2,ϵf

(x)
2,t ,

where ϵi,t ∼ iidN (0, 1) and independent from all the model variables so that we have

homoskedastic idiosyncratic error terms (the difference between mean and quantile of in-

terest is absorbed in the fixed-effect so centering at the relevant quantile is not necessary).

Further, if γ1,ϵ ̸= 0 or γ2,ϵ ̸= 0, then we will have endogeneity which in turn induces the

estimators of the model parameters to be biased. This serves to evaluate the test under

the null hypothesis. Second, we consider

ui,t,τ = (ϵi,t − zτ )
√

1 + 0.5x21,i,t + 0.5x22,i,t,

where zτ is the τ -quantile of the standard normal distribution. Under the latter specifica-

tion, ui,t,τ is conditionally heteroskedastic, and dependent across the cross-sectional units,

since xl,i,t are themselves dependent across the cross-sectional dimension. This serves to

evaluate the proposed tests under the alternative.

The KDE of f(qτ ) is based on pooled normalized residuals, ûi,t,τ/σ̂i, where σ̂i is the

standard deviation of {ûi,t,τ}t=1,2,...,T . (Recall, the residual density should be estimated

at zero and not at qτ given the centering of the QR residuals.) We use a Gaussian kernel

with a bandwidth of 0.35(NT )−0.2. The bandwidth is based on Silverman’s rule of thumb,

where we exploit the fact that the residuals are standardized prior to computing the KDE.

Furthermore, it is smaller than the Silverman bandwidth choice for KDEs, which is due to
3 This alternative design represents low regressor cross-dependence in the setup of Demetrescu and

Homm (2016); however, this does not significantly change the results and we do not report them here.
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the fact that the KDE of f(qτ ) is based here on residuals containing estimation noise, and

a certain degree of undersmoothing was found in preliminary simulations to be beneficial

to the finite-sample properties of the test.

We estimate the model unit-by-unit using the conventional QR procedure of Koenker and

Bassett (1978), as well as in a pooled manner using the fixed-effects estimation procedure

proposed by Koenker (2004). Results based on 2000 Monte Carlo replications for each

case are given in Tables 1 and 4 for all quantiles τ of interest.

Table 1 provides the empirical rejection rates when the idiosyncratic error term is ho-

moskedastic. As expected, the test based on Tτ is oversized when T is relatively small,

with distortions being somewhat larger for the individual-unit estimation case. This Table

also shows that T̃τ provides a good size correction for all quantiles of interest for almost

all {N, T} constellations for pooled estimation of the slope coefficients. Exceptions are

observed when τ = 0.2 and τ = 0.8 with N = 100 and T = 10 where the rejection rate

of T̃τ turns out to be 8.1% and 8.3%, respectively. The resulting size control observed for

the individual-unit estimation is effective in general too, but is sensitive to cases when

N/T is bigger than 2. Further, when we observe size distortions for the individual-unit

estimation, then these turn out to be larger when τ = 0.5 compared to τ = 0.2 and 0.8.

Table 1 also reports the rejection rates for the portmanteau statistic, M̃3, which we

calculate using the corrected statistic T̃τ computed at the quantiles τ = {0.2, 0.5, 0.8}.

The observed behavior of M̃3 is in line with that of the tests for individual quantiles.

Table 4 shows that the tests reject more often than under the previous scenario. This

is not surprising since ui,t,τ is cross-sectionally dependent through its dependence on xi,t

(which is in turn cross-sectionally dependent). Also, the rejection frequencies increase as

either N or T grow, apparently faster in N than in T . Both Tτ and its corrected version

T̃τ are able to detect cross-sectional error dependence (where of course the corrected

version should be preferred on the basis of the improved size control). The conclusions

regarding the portmanteau statistic, M̃3, are qualitatively the same. While the tests are,

expectedly, not able to pin down the source of dependence, they are clearly indicative of

misspecification. All in all, the tests appear to be a useful diagnostic tool for specifying

16



panel QR models.

Table 1: Empirical rejection frequencies for Tτ and T̃τ under a homoskedastic error struc-
ture and no cross-unit error dependence with γ1,ϵ = γ2,ϵ = 0

Individual-unit estimation Pooled estimation

T N T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3

10 10 14.0 6.6 20.6 11.4 13.5 6.5 5.8 12.0 5.5 12.5 5.4 11.7 5.8 5.3
20 10 8.4 5.1 10.2 7.1 9.2 6.0 5.0 8.3 5.4 7.7 5.3 8.2 5.3 4.9
30 10 6.6 3.9 8.5 5.5 7.0 4.8 4.0 6.9 5.0 7.4 5.0 7.8 5.6 5.2
50 10 7.0 5.2 7.6 5.8 6.6 5.0 5.1 6.8 5.2 6.9 5.2 6.8 5.0 5.2
100 10 7.0 6.1 6.9 6.1 6.8 6.0 5.9 6.9 5.7 6.5 5.6 6.7 5.7 5.6

10 20 30.5 7.4 52.3 19.0 31.0 7.1 7.6 27.1 5.6 26.7 5.5 25.8 6.1 5.4
20 20 13.2 5.2 19.0 7.7 12.6 4.8 4.4 12.7 4.9 12.8 5.2 12.9 4.9 5.0
30 20 11.2 6.1 12.4 6.7 10.6 5.2 5.3 11.2 5.3 11.1 5.1 11.0 5.1 5.0
50 20 9.2 4.9 10.3 6.2 8.6 4.8 4.9 9.2 5.1 9.2 4.9 9.2 4.9 4.8
100 20 6.5 4.8 7.2 5.4 6.6 4.7 4.8 6.7 4.5 6.5 4.7 7.0 4.6 4.4

10 30 54.9 9.2 82.6 29.7 54.0 7.8 11.3 48.9 6.1 48.1 5.8 48.2 6.5 6.0
20 30 18.3 4.9 28.3 9.3 18.1 4.8 4.8 18.8 4.5 18.3 4.8 18.1 5.3 4.8
30 30 12.2 4.0 16.8 6.0 11.5 3.9 3.7 11.0 3.8 11.2 3.8 11.2 3.6 3.6
50 30 9.2 4.7 11.6 5.6 9.3 4.3 4.6 9.6 4.6 9.8 4.9 9.7 4.9 4.8
100 30 6.8 4.3 7.7 4.4 7.4 3.9 4.2 6.3 4.0 6.3 4.0 6.1 3.7 3.9

10 50 93.5 12.9 99.9 52.7 92.9 11.9 19.8 88.7 6.3 89.1 6.3 89.1 6.5 6.1
20 50 36.6 3.6 56.5 10.7 35.7 3.7 4.0 34.4 3.2 35.1 3.2 35.1 3.2 3.0
30 50 20.4 4.0 31.8 7.4 20.9 4.0 4.3 20.6 3.7 20.8 3.7 21.0 3.7 3.7
50 50 12.2 3.4 15.3 4.4 11.4 2.9 3.4 12.0 2.9 12.0 2.8 11.4 2.7 2.7
100 50 7.8 3.1 9.6 3.5 8.3 3.3 3.1 8.6 2.9 9.0 3.1 8.8 3.0 2.8

10 100 100.0 23.8 100.0 93.0 100.0 24.2 56.4 100.0 8.8 100.0 7.9 100.0 8.5 8.6
20 100 84.6 3.7 98.1 22.0 85.7 3.4 5.8 85.1 3.5 84.8 3.4 85.0 3.5 3.4
30 100 50.6 2.6 74.3 8.8 49.2 3.2 3.8 49.3 2.3 49.4 2.3 50.0 2.4 2.4
50 100 25.9 2.4 38.2 4.7 24.8 2.5 2.8 25.6 2.3 25.5 2.2 25.2 2.3 2.3
100 100 12.2 2.5 15.7 3.3 12.4 2.1 2.7 11.7 2.8 11.8 2.8 11.8 2.8 2.9

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (5), respectively com-
puted at quantiles τ = {0.2, 0.5, 0.8} using either individual-unit or pooled fixed-effects
estimation. M̃3 = 1

3
(T̃0.2 + T̃0.5 + T̃0.8) corresponds to the portmanteau statistics in

(7). All results reported are based on the nominal size of 5% and 2000 Monte Carlo
replications.
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Table 2: Empirical rejection frequencies for Tτ and T̃τ under a homoskedastic
error structure and no cross-unit error dependence with γ1,ϵ = γ2,ϵ = 0.5

Individual-unit estimation Pooled estimation

N T T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8

10 10 14.1 5.8 21.3 9.7 12.8 5.6 12.0 4.6 11.6 3.6 11.9 4.1
20 10 8.7 4.4 10.6 5.2 8.8 5.3 8.9 4.7 8.6 4.5 8.5 4.3
30 10 7.1 4.5 7.9 4.3 7.9 4.5 7.7 4.6 7.5 4.4 8.0 4.6
50 10 6.3 4.5 7.3 5.1 6.6 4.9 7.1 5.3 7.2 5.3 7.4 5.0
100 10 6.7 5.4 6.8 5.3 6.5 5.0 6.5 5.1 6.5 4.9 6.8 5.7

10 20 29.5 5.3 48.8 12.4 28.3 4.4 25.1 4.0 24.5 3.3 25.2 4.1
20 20 13.3 3.9 16.5 4.9 12.7 3.6 13.1 3.1 13.2 2.8 12.7 3.1
30 20 9.6 3.2 11.9 4.9 10.3 4.1 9.6 4.0 9.5 3.8 9.9 3.9
50 20 8.3 3.9 9.0 4.1 8.3 4.1 7.8 4.1 7.6 4.1 7.6 4.4
100 20 6.7 3.9 6.5 3.8 6.7 4.3 7.1 4.0 7.0 4.0 7.0 4.3

10 30 56.7 6.5 80.4 18.6 53.6 5.8 47.2 4.0 45.8 3.3 46.6 4.6
20 30 20.1 3.5 28.5 5.6 19.8 3.6 19.8 3.2 19.8 2.4 20.0 3.0
30 30 12.8 2.8 15.3 3.8 12.3 3.0 12.4 3.0 12.0 2.3 13.0 2.7
50 30 8.4 2.6 9.5 3.1 9.3 2.7 8.8 2.4 9.1 2.1 9.3 2.4
100 30 7.8 3.6 7.5 3.8 7.6 3.4 7.3 3.3 7.2 3.6 7.5 3.4

10 50 93.0 8.8 99.8 38.0 93.8 8.7 88.6 4.6 88.0 3.0 88.1 3.7
20 50 36.6 2.3 53.4 5.2 34.9 2.3 35.9 2.1 35.2 1.8 34.8 2.6
30 50 19.8 2.3 27.6 2.6 20.6 1.9 21.5 1.9 20.7 1.4 20.8 1.7
50 50 15.3 2.8 17.7 2.7 14.7 2.1 14.1 2.2 14.5 2.0 14.6 2.3
100 50 9.2 2.9 8.9 2.8 9.1 3.0 8.9 3.0 9.2 2.8 9.0 3.1

10 100 100.0 15.7 100.0 78.6 100.0 15.8 100.0 5.2 100.0 2.7 100.0 4.6
20 100 87.3 1.8 98.0 7.2 86.8 1.8 86.1 1.7 86.1 1.2 85.4 1.8
30 100 52.6 1.2 69.6 2.2 52.3 1.1 50.8 0.7 50.3 0.5 50.8 0.7
50 100 27.2 1.1 34.2 1.2 27.4 0.8 27.4 1.0 27.0 0.6 27.4 1.1
100 100 13.5 1.3 13.6 1.1 13.9 1.0 13.9 1.4 13.4 1.2 13.5 1.4

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (5), respec-
tively computed at quantiles τ = {0.2, 0.5, 0.8} using either individual-unit
or pooled fixed-effects estimation. M̃3 = 1

3
(T̃0.2 + T̃0.5 + T̃0.8) corresponds

to the portmanteau statistics in (7). All results reported are based on the
nominal size of 5% and 2000 Monte Carlo replications
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Table 3: Empirical rejection frequencies for Tτ and T̃τ under a homoskedastic
error structure and no cross-unit error dependence with γ1,ϵ = γ2,ϵ = 1

Individual-unit estimation Pooled estimation

N T T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8

10 10 14.1 5.8 21.3 9.7 12.8 5.6 12.0 4.6 11.6 3.6 11.9 4.1
20 10 8.7 4.4 10.6 5.2 8.8 5.3 8.9 4.7 8.6 4.5 8.5 4.3
30 10 7.1 4.5 7.9 4.3 7.9 4.5 7.7 4.6 7.5 4.4 8.0 4.6
50 10 6.3 4.5 7.3 5.1 6.6 4.9 7.1 5.3 7.2 5.3 7.4 5.0
100 10 6.7 5.4 6.8 5.3 6.5 5.0 6.5 5.1 6.5 4.9 6.8 5.7

10 10 14.0 6.7 19.7 9.0 14.5 6.0 12.8 5.0 11.9 4.1 12.1 4.5
20 10 8.9 4.6 10.1 5.5 9.2 5.5 9.7 4.8 8.2 4.4 8.7 4.7
30 10 8.2 5.5 7.5 4.4 9.0 5.0 8.5 5.7 8.1 5.2 8.6 5.5
50 10 7.2 4.8 7.2 4.7 7.7 5.0 7.7 5.3 7.2 5.0 7.8 5.3
100 10 7.6 6.6 7.2 5.9 7.7 6.3 7.5 6.2 7.2 6.1 8.4 7.2

10 20 31.0 6.2 46.4 11.2 29.9 5.7 26.2 4.7 25.0 3.8 25.6 4.6
20 20 14.2 4.6 16.4 4.7 14.0 4.2 14.4 4.2 13.5 3.4 14.0 4.1
30 20 11.8 4.7 11.2 4.6 11.5 4.7 10.8 4.8 10.2 4.0 11.0 4.8
50 20 10.5 5.8 8.9 4.6 9.6 4.9 10.2 5.6 9.0 4.6 10.1 5.1
100 20 10.0 5.9 8.6 4.9 9.8 5.7 10.0 6.6 9.2 5.7 10.3 6.3

10 30 56.2 7.5 76.5 15.9 54.8 7.0 49.1 4.9 47.1 3.5 47.5 5.0
20 30 21.5 3.6 25.0 4.6 22.4 3.7 21.1 3.9 20.4 3.1 21.0 3.6
30 30 14.9 3.6 14.3 3.4 13.8 3.9 15.2 4.1 13.9 3.9 14.4 4.2
50 30 12.1 3.7 10.6 3.5 11.5 3.7 11.5 4.5 10.6 3.6 12.2 4.3
100 30 11.6 6.1 9.5 4.5 12.2 6.9 12.0 6.1 11.3 5.7 12.2 6.5

10 50 93.4 10.8 99.4 30.7 93.4 9.7 88.7 5.5 88.5 3.1 88.4 4.7
20 50 41.0 3.2 48.4 3.6 39.6 3.2 38.5 3.4 37.7 2.5 37.9 3.6
30 50 25.3 3.5 24.5 2.3 25.7 2.8 26.3 2.5 25.1 2.0 25.3 2.7
50 50 21.9 4.8 16.7 2.6 20.0 3.8 20.1 4.6 20.1 3.7 21.1 4.6
100 50 20.5 7.4 13.6 4.7 20.6 7.9 20.2 6.9 18.9 6.7 20.0 8.0

10 100 100.0 19.2 100.0 68.0 100.0 19.8 100.0 8.0 100.0 3.9 100.0 6.8
20 100 90.3 3.6 96.1 4.7 89.8 3.9 88.6 3.5 88.2 1.9 87.9 3.4
30 100 63.5 3.0 64.8 1.2 61.7 2.9 63.5 2.5 61.9 1.5 61.9 2.0
50 100 45.1 3.7 35.6 1.0 45.1 3.7 44.5 4.0 44.9 2.8 45.3 3.5
100 100 41.7 11.2 26.9 4.6 41.0 10.7 41.7 10.8 40.5 9.5 40.8 10.0

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (5), respectively
computed at quantiles τ = {0.2, 0.5, 0.8} using either individual-unit or pooled
fixed-effects estimation. M̃3 = 1

3
(T̃0.2 + T̃0.5 + T̃0.8) corresponds to the port-

manteau statistics in (7). All results reported are based on the nominal size
of 5% and 2000 Monte Carlo replications
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Table 4: Empirical rejection frequencies for Tτ and T̃τ under a heteroskedastic error structure and
no cross-unit error dependence

Individual-unit estimation Pooled estimation

T N T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3 T0.2 T̃0.2 T0.5 T̃0.5 T0.8 T̃0.8 M̃3

10 10 20.4 12.2 24.7 14.4 21.3 11.6 9.5 27.4 17.0 24.0 13.9 27.0 16.6 14.2
20 10 23.8 17.2 23.1 16.8 24.8 17.5 14.7 30.1 22.5 26.4 19.5 31.4 24.2 21.1
30 10 27.4 22.2 23.6 18.7 25.7 20.5 18.8 31.5 26.0 26.4 21.2 31.0 26.2 23.5
50 10 30.4 26.6 24.6 21.2 29.8 26.2 22.7 33.8 29.8 26.3 22.4 33.7 29.6 27.3
100 10 40.4 38.2 27.7 24.7 40.8 38.1 33.3 42.9 40.2 28.2 25.9 42.7 39.9 35.4

10 20 50.1 21.5 60.7 28.9 51.6 21.3 19.6 63.2 33.2 60.0 27.4 63.6 31.9 30.6
20 20 48.6 31.8 48.8 30.8 47.8 31.7 30.8 58.8 43.4 54.5 37.6 61.4 45.2 42.4
30 20 56.1 44.1 49.8 36.6 53.4 40.5 41.4 65.6 52.9 55.1 42.9 62.0 51.5 49.7
50 20 65.4 58.0 56.6 46.9 66.3 57.8 55.8 72.0 63.1 60.0 51.5 72.1 64.8 61.5
100 20 80.6 76.1 60.2 54.7 78.2 74.3 72.4 82.0 77.4 61.9 56.9 81.2 77.1 74.2

10 30 77.1 31.8 87.8 42.4 77.9 30.9 32.8 87.7 47.6 85.3 42.2 87.5 46.0 45.6
20 30 72.4 48.9 71.3 47.9 72.8 49.0 49.1 81.9 63.3 77.8 54.8 81.4 63.2 61.4
30 30 79.9 65.6 76.0 58.9 79.5 65.1 65.7 85.6 73.9 80.8 66.3 85.3 74.5 73.0
50 30 88.0 79.9 79.9 68.7 87.7 80.3 79.5 90.4 84.7 83.8 74.5 90.4 84.9 83.7
100 30 95.0 93.0 84.4 78.3 95.7 93.3 92.7 95.8 93.8 86.0 80.9 96.8 94.2 93.4

10 50 99.1 52.4 99.9 69.4 99.1 52.2 60.5 99.5 68.9 99.6 65.3 99.4 69.3 69.1
20 50 94.6 73.8 96.3 73.6 94.9 73.0 76.5 97.8 85.6 97.3 81.3 97.6 85.0 85.3
30 50 96.6 87.2 95.9 84.6 96.9 87.6 88.7 98.2 92.3 97.7 87.8 98.3 92.7 92.2
50 50 99.1 96.6 98.1 92.6 99.0 96.4 97.0 99.5 98.0 98.6 94.8 99.5 97.9 97.9
100 50 100.0 99.9 99.0 97.0 99.9 99.6 99.8 100.0 100.0 99.1 97.9 99.8 99.7 99.8

10 100 100.0 84.4 100.0 97.7 100.0 84.6 93.8 100.0 91.2 100.0 90.1 100.0 91.2 91.8
20 100 100.0 95.9 100.0 97.3 99.9 95.6 97.1 100.0 98.7 100.0 97.7 100.0 98.3 98.3
30 100 100.0 99.1 100.0 99.0 100.0 99.2 99.0 100.0 99.5 100.0 99.2 100.0 99.5 99.4
50 100 100.0 99.9 100.0 99.9 100.0 99.8 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0
100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Tτ and T̃τ , correspond to the test statistics in (3) and (5), respectively computed at
quantiles τ = {0.2, 0.5, 0.8} using either individual-unit or pooled fixed-effects estimation. M̃3 =
1
3
(T̃0.2 + T̃0.5 + T̃0.8) corresponds to the portmanteau statistics in (7). All results reported are

based on the nominal size of 5% and 2000 Monte Carlo replications.
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5 A panel QR analysis of housing market growth

Homes are one of the most important assets in many households’ portfolios (Englund

et al., 2002) and, consequently, changes in housing wealth may lead to changes in home-

owners’ consumption (Case et al., 2005). E.g., it has been shown that the impact of

changes in housing wealth on the economy can be more important than changes in wealth

caused by stock price movements (Helbling and Terrones, 2003, and Rapach and Strauss,

2006). Economic history indeed suggests that some of the most severe systemic financial

crises have been associated with boom-bust cycles in real estate markets (see e.g. Bordo

and Jeanne, 2002, and Crowe et al., 2013).

In this context, Deghi et al. (2020) propose the so-called houses-prices-at-risk approach as

a measure to evaluate risks to the real estate market. This measure is inspired in the work

of Adrian et al. (2022) (see also Adrian et al., 2019) who developed a measure to evaluate

risks to GDP growth (Growth-at-Risk); see Brownlees and Souza (2021) and Nandi (2022)

for panel approaches to Growth-at-Risk. In a similar vein, Makabe and Norimasa (2022)

analyse the term structure of Inflation-at-Risk. Such approaches estimate a (panel) QR

to determine which of the covariates considered affect the response variable of interest,

i.e. house price growth (for houses-prices-at-risk), inflation (for inflation-at-risk), or GDP

growth (for growth-at-risk) and to explain the conditional predictive distribution of the

response variable derived from the estimates. Moreover, the entire conditional distribution

of the variable of interest is computed following two steps: (1) panel QR estimation of the

effect of the covariates at each quantile, and (2) approximation of the estimated quantile

function e.g. with a skewed t-distribution. Consequently, the correct estimation in the

first step is of tantamount importance in this approach. In this section, we illustrate the

relevance of our procedure with an application of panel QR to house price growth data

for eleven countries.
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5.1 Data

In our analysis we consider a balanced panel of quarterly time series, for the period from

1995:Q1 to 2020:Q3 (T = 103), for nine Euro Area countries (Germany (DE), France

(FR), Italy (IT), Spain (ES), the Netherlands (NL), Ireland (IE), Portugal (PT), Belgium

(BE) and Finland (FI)), the UK and the US (N = 11). Data on house prices, disposable

income, labour force and private consumption deflator were collected from the OECD,

while short-term interest rates were taken from the European Central Bank. A detailed

description of all data sources and availability, as well as country specificities are provided

in Appendix C.

House price indices correspond generally to seasonally unadjusted series constructed from

national data from a variety of public and/or private sources (e.g., national statistical

services, mortgage lenders and real estate agents). National house price series may differ

in terms of dwelling types and geographical coverage (most are country-wide and refer to

existing apartments). Several series are based on hedonic approaches to price measure-

ment, characterized by valuing the houses in terms of their attributes (average square

meter price, size of the dwellings involved in transactions and their location).

1995:02 2000:01 2005:01 2010:01 2015:01 2020:01
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-4

-2
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Figure 1: Quarterly change in log real house prices (in percentage) for 11 quarterly real
house price series
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In our analysis we consider fluctuations in real house prices,4 measured as quarterly

changes in the natural logarithm of the real house price index of each country, i.e., quar-

terly real house price growth. Figure 1 plots the cross-sectional 10th-90th percentile range,

the 25th-75th percentile range and the median of the 11 quarterly real house price growth

at each time in the sample.

This figure illustrates that, although some countries appear to be more cyclical than

others, real house prices tend to co-move during crises, which suggests the presence of

an underlying common factor in these series. We see a general decline during the global

financial crisis (2008-2009) as well as during the European sovereign debt crisis (2011-

2012).

5.2 Model

There is a vast number of studies that analyses the determinants of house prices and

their growth. Findings in the literature indicate that models that explain changes in

house prices include a wide set of fundamentals, such as income (or GDP), population,

employment or unemployment rate, taxes, borrowing costs, construction costs and returns

on alternative assets (Poterba et al., 1991, Englund and Ioannides, 1997, Tsatsaronis and

Zhu, 2004).

In our analysis, the dependent variable is the growth rate of real house prices, ∆rhp. To

keep the model tractable, and due to data availability, we focus on the most consensual

fundamentals, such as, log of real disposable income, lrdi, real mortgage interest rate,

rmtgr, log of gross fixed capital formation, lGFCF , the unemployment rate, unemp, and

the volume of loans for house purchases, vlhp.

We take a predictive perspective here, and the panel QR model is given as

∆rhpi,t = αi,τ + β1,τ∆lrdii,t−1 + β2,τ∆lGFCFi,t−1 + β3,τ∆vlhpi,t−1

+β4,τunempi,t−1 + β5,τrmtgri,t−1 + λ′
i,τf t,τ + ui,t,τ , (9)

4All series in real terms are computed using the private consumption deflator.
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where τ ∈ (0, 1) is the quantile of interest, i = 1, . . . , 11 indexes the eleven countries

considered, and ∆ is the first difference operator.

The quantile factor methodology recently proposed by Chen et al. (2021), which we use to

estimate a panel QR model with factors in (9), allows for quantile-dependent factors, f t,τ .

Our tests should detect such forms of cross-sectional dependence as well. The number of

factors considered at each quantile is determined using the rank-minimization approach

proposed by Chen et al..

Table 5: Panel QR results from models with and without quantile factors (QRF and QR0,
respectively)

QR0 QRF QR0 QRF QR0 QRF

τ = 0.1 τ = 0.2 τ = 0.3

β1,τ 0.2293∗∗∗ 0.1554∗∗∗ 0.1136∗∗∗ 0.0638∗∗∗ 0.1174∗∗∗ 0.0695∗∗∗

β2,τ 0.1072∗∗∗ 0.0543∗∗∗ 0.1220∗∗∗ 0.0816∗∗∗ 0.1175∗∗∗ 0.0759∗∗∗

β3,τ 0.2260∗∗∗ 0.1305∗∗∗ 0.2205∗∗∗ 0.0896∗∗∗ 0.1909∗∗∗ 0.1007∗∗∗

β4,τ −0.1258∗∗∗ −0.0555∗∗∗ −0.0807∗∗∗ −0.0749∗∗∗ −0.0537∗∗∗ −0.0428∗∗∗

β5,τ −0.1597∗∗∗ −0.0733∗∗∗ −0.1295∗∗∗ −0.0486∗∗ −0.0922∗∗∗ −0.0683∗∗∗

f1,τ −0.0037∗ −0.0038∗∗ 0.0017
f2,τ 0.0091∗∗∗

τ = 0.4 τ = 0.5 τ = 0.6

β1,τ 0.1131∗∗∗ 0.0648∗∗∗ 0.0669∗∗ 0.0441 0.0469 0.0498∗

β2,τ 0.0968∗∗∗ 0.0756∗∗∗ 0.1017∗∗∗ 0.0694∗∗∗ 0.0817∗∗∗ 0.0586∗∗∗

β3,τ 0.1955∗∗∗ 0.0827∗∗∗ 0.1904∗∗∗ 0.0838∗∗∗ 0.1652∗∗∗ 0.0495∗∗

β4,τ −0.0439∗∗∗ −0.0474∗∗∗ −0.0363∗∗ −0.0331∗∗ −0.0246∗ 0.0137
β5,τ −0.0718∗∗∗ −0.1081∗∗∗ −0.0607∗∗∗ −0.0974∗∗∗ −0.0638∗∗∗ −0.0900∗∗∗

f1,τ 0.0059∗∗∗ 0.0072∗∗∗ 0.0088∗∗∗

f2,τ −0.0123∗∗∗ −0.0114∗∗∗ 0.0116∗∗∗

f3,τ −0.0056∗∗∗ −0.0046∗∗ 0.0034∗

f4,τ 0.0143∗∗∗ 0.0138∗∗∗ 0.0113∗∗∗

f5,τ 0.0107∗∗∗ 0.0114∗∗∗

τ = 0.7 τ = 0.8 τ = 0.9

β1,τ 0.0472 0.0454∗ 0.0416 0.0479 0.0494 0.0379
β2,τ 0.0693∗∗∗ 0.0552∗∗∗ 0.0527∗∗∗ 0.0465∗∗∗ 0.0268 0.0531∗∗∗

β3,τ 0.1471∗∗∗ 0.0560∗∗∗ 0.1485∗∗∗ 0.0351∗ 0.1438∗∗∗ 0.0032
β4,τ −0.0356∗∗ 0.0088 −0.0170 −0.0053 0.0119 −0.0179
β5,τ −0.0692∗∗∗ −0.1153∗∗∗ −0.0472∗∗ −0.0902∗∗∗ −0.0366 0.0066
f1,τ 0.0094∗∗∗ −0.0072∗∗∗ 0.0058∗∗∗

f2,τ 0.0107∗∗∗

Note: Quantile regression estimation results of (9) with (QRF ) and without (QR0) the inclusion of
factors. The factors used where extracted using the approach of Chen et al. (2021).

Table 5 provides the estimation results of the panel QR model in (9) with (QRF ) and

without (QR0) the inclusion of factors.

The signs of the parameter estimates in Table 5 are in general as expected. Specifically,
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positive variations in the log of real disposable income, lrdi (β1,τ ), the log of gross fixed

capital formation, lGFCF (β2,τ ) and the volume of loans for house purchases, vlhp (β3,τ )

have positive impacts on house price growth whereas positive variations in the unemploy-

ment rate, unemp (β4,τ ), and the real mortgage interest rate, rmtgr (β5,τ ), have negative

impacts on house price growth. Moreover, we also observe that the association between

the covariates and house price growth varies at the different parts of the house price

growth distribution. Overall, the differences in slopes indicate a markedly stronger rela-

tionship towards the left tail of the future house prices growth distribution relatively to

the median and the upper percentiles of the distribution.

Importantly, the QRF estimation results highlight the relevance of the quantile factors

used in the panel QR model. This Table shows that the factors are in general all sta-

tistically significant regardless of the quantile τ considered. Furthermore, if we contrast

the slope parameter estimates obtained from QR0 and QRF we observe that the slope

estimates are in general different.5

To formally support the choice of the QRF results, Table 6 provides the outcomes of the

QR cross-sectional dependence tests introduced here at quantiles τ ∈ {0.1, 0.2, . . . , 0.9}.

In addition to the results in Table 6 we have also computed the classical Breuch-Pagan

test, BP = 31.144, and the bias-corrected version proposed by Baltagi et al. (2012),

BPbc = 31.089.

The results in Table 6 indicate that:

1. there is not a significant difference between the asymptotic and the corrected versions

of the panel QR cross-sectional dependence tests;

2. the strength of the cross-correlation depends to some extent on the quantile of

interest. The BP and the BPbc tests do not provide quantile specific information.
5This is also observed by Nandi (2022) when explicitly accounting for cross-unit dependence in the

panel QR analysis of Brownlees and Souza (2021).
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3. there are visible differences between the tests based on pooled estimation (Tτ and

T̃τ ) and those based on individual-unit estimation (T (i)
τ and T̃ (i)

τ ), where the latter

indicates stronger cross-correlation. This points towards heterogeneity of the slope

parameters in addition to cross-unit error dependence.

Table 6: Cross-sectional dependence test results

τ T (i)
τ T̃ (i)

τ Tτ T̃τ

0.100 16.244 16.151 25.583 25.489
0.200 17.613 17.515 25.853 25.754
0.300 15.369 15.269 27.721 27.622
0.400 17.419 17.316 28.122 28.019
0.500 19.539 19.441 28.899 28.801
0.600 19.341 19.243 33.287 33.188
0.700 21.424 21.326 35.864 35.766
0.800 20.687 20.592 37.298 37.202
0.900 30.436 30.337 41.305 41.207

Note: Tk and T̃k are the test statistics provided in (3) and (5), respectively; and T (i)
k and T̃ (i)

k

are also computed as indicated in (3) and (5), respectively, but the residuals used are obtained
from individual regressions.

Hence, overall Table 6 points to the presence of cross-sectional dependence which suggests

that this feature needs to be addressed in the panel QR estimation and hence, supports

the results obtained from the factor augmented panel QR model in (9).

Since Table 6 is suggestive of slope coefficient heterogeneity, we provide individual-estimation

results in Appendix C (Table C2) and we also present plots of the country specific quantile

predictions (Figure C1). Interestingly, during the COVID 19 pandemic the development

of the housing market has been atypical. This is, to a certain extend, well illustrated in

Figure C1. Specifically, we note that at the end of the sample, for many of the countries

considered, the covariates point to an evolution of house price growth which is in contrast

to the actual observed house price growth dynamics. In past recessions, downturns were

typically followed by a moderate fall in nominal house prices, lasting about four quarters.

However, in the pandemic period until the end of 2021, there was no decline at all. In

addition, the current recession has not been accompanied by significant changes in credit

growth, unlike past episodes, when households typically reduced their leverage after it

had increased in the expansion phase (Igan et al., 2022).
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In recent years, the international synchronization of house prices has increased. As noted

by Igan et al. (2022), more than 60% of house price movements can now be explained

by a common global factor. One reason for this much higher synchronization is that the

pandemic has been truly global, thus inducing similar policy reactions and flattening yield

curves worldwide.

6 Concluding remarks

This paper has argued that cross-sectional dependence in panel QR models may have

a biasing effect on the QR estimator even if the latent error common components are

independent of the regressors. This extends more generally to panel nonlinear GMM

estimators with errors having a factor structure.

Motivated by this argument, we proposed a test for no cross-sectional dependence. Such

tests may also be interpreted as misspecification tests, since the detection of cross-sectional

dependence may imply the existence of potential estimation biases.

The proposed test is a version of the familiar Breusch-Pagan test based on residuals from

either pooled or individual-unit QR estimation. While it possesses a standard normal

limiting distribution under joint N, T asymptotics, the rate restrictions are not benign,

which is reflected in the finite-sample behavior. For this reason we discuss a finite-sample

correction which largely removes the size distortions when N is too large in relation to T .

We also discuss a portmanteau version of the tests which aggregates evidence across several

quantiles. Moreover, we provide an in-depth Monte Carlo analysis of the finite sample

size and power properties of the new procedures introduced, confirming the usefulness

of the finite-sample correction and revealing interesting power performance under the

alternative.

Finally, we illustrate the usefulness of our approach in an empirical analysis of house-price

growth determinants, from a predictive perspective, in a panel of eleven countries (Ger-

many (DE), France (FR), Italy (IT), Spain (ES), the Netherlands (NL), Ireland (IE),

Portugal (PT), Belgium (BE) and Finland (FI), the UK and the US), for the period
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from 1995:Q1 to 2020:Q3. The tests introduced clearly highlight the need to address

cross-sectional dependence, favoring therefore a factor augmented panel QR model. Fur-

thermore, evidence of cross-dependence is stronger in pooled residuals than in residuals

from individual-unit estimation, indicating the presence of slope coefficient heterogeneity

in addition to cross-unit dependence in the data.
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Appendix A - Auxiliary results

Throughout the appendix, let ui, ûi,τ and Xi stack ui,t,τ , ûi,t,τ and x′
i,t for t = 1, ..., T , and

denote by σ̂ij the sample covariance of the residuals, σ̂ij = 1
T

(
ûi,τ − ¯̂ui,τι

)′ (
ûj,τ − ¯̂uj,τι

)
with ι a T -vector of ones, and by äi (Äi) the column-specific demeaning of a vector

(matrix).

Lemma 1 Under the weaker assumptions of Proposition 2
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iüj

Tσ2
iiσ

2
jj

= op(N);

5. Q5 = −2
∑N−1

i=1

∑N
j=i+1

ü′
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iẌj(β̂i,τ−βi)
Tσ2

iiσ
2
jj

= op(N);

10. Q10 =
∑N−1

i=1

∑N
j=i+1 T

σ̂2
ij

(
1−

σ̂2
iiσ̂

2
jj

σ2
ii

σ2
jj

)
σ̂2
iiσ̂

2
jj

= op(N),

where Q1 through Q10 are computed using either a pooled slope coefficient estimator or individual-unit

estimators.

Lemma 2 Under the weaker assumptions of Proposition 2, let αT = αN = 1
4 . Then,
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∑N
j=i+1

(
σj

T 1/2+αT NαN
ℓ′i,τ F̄

′ϵ′j

)2
= op(1);

4. S4 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

σiσj√
T
ϵ′iϵj

1
T 1/2+2αT N2αN

ℓ′i,τ F̄
′F̄ℓj,τ = op(1);

5. S5 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

σiσj√
T
ϵ′iϵj

σi

T 1/2+αT NαN
ϵ′iF̄ℓj,τ = op(1);

6. S6 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

σiσj√
T
ϵ′iϵj

σj

T 1/2+αT NαN
ℓ′i,τ F̄
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7. S7 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

1
T 1/2+2αT N2αN

ℓ′i,τ F̄
′F̄ℓj,τ

σi

T 1/2+αT NαN
ϵ′iF̄ℓj,τ = op(1);

8. S8 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

1
T 1/2+2αT N2αN

ℓ′i,τ F̄
′F̄ℓj,τ

σj

T 1/2+αT NαN
ℓ′i,τ F̄

′ϵ′j = op(1);

9. S9 = 1√
N(N−1)

∑N−1
i=1

∑N
j=i+1

σi

T 1/2+αT NαN
ϵ′iF̄ℓj,τ

σj

T 1/2+αT NαN
ℓ′i,τ F̄

′ϵ′j = op(1).

Appendix B - Proofs of main results

Proof of Lemma 1

We begin with Q1 =
∑N−1

i=1

∑N
j=i+1

T
σ2
i σ

2
j

(
1
T

(
β̂i,τ − βi

)′
Ẍ′

iüj

)2

for which we have

Q1 =
1

T
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N∑
j=i+1

1

σ2
i σ

2
j

(√
T
(
β̂i,τ − βi

)′ 1√
T
Ẍ′

iüj

)2

=
1

T
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N∑
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1

σ2
i σ

2
j

E
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T
(
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)′ 1√
T
Ẍ′

iüj
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+
1

T
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N∑
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[ 1
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i σ

2
j

(√
T
(
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)′ 1√
T
Ẍ′

iüj

)2

− 1

σ2
i σ

2
j

E

(√
T
(
β̂i,τ − βi

)′ 1√
T
Ẍ′

iüj

)2 ]
= Q1,1 +Q1,2.

Under the null of no cross-sectional dependence and with Assumptions 3 and 5, we note that RNT does

not play any role asymptotically in either summand, so, with a mild abuse of procedure, we set it to 0

and obtain

Q1,1 =
1

T

N−1∑
i=1

N∑
j=i+1

1

σ2
i

E

(√
T
(
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)′)2

Σi + op

(
N2

T

)

=
N(N − 1)τ(1− τ)

2Tf(qτ )2
+ op

(
N2

T

)
.

For Q1,2 we have, by means of Assumption 5 and no dependence under the null, that

T

N2
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T 2
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N∑
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2
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(
1

T

(
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σ2
i σ

2
j
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(
1

T

(
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= C

T
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N∑
j=i+1

((
1

T
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(
1

T
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)
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,
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since E

∣∣∣∣∣ ( 1
T 1

′Ẍ′
iüj

)2
− E

(
1
T 1

′Ẍ′
iüj

)2 ∣∣∣∣∣ ≤ C
T .

Using similar arguments for Q2 we obtain

Q1 +Q2 =
N (N − 1)

T

τ (1− τ)

f (qτ )
2 +Op (1) ,

which after scaling by 1√
N(N−1)

, constitutes the second correction term suggested in (5).

We now turn to Q3,

1

N
Q3 =

1

N
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N∑
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(
1
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(
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(
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2
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1
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N∑
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(
Ẍ′
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T
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(
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T

)
,

since

1
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N∑
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E
(
Ẍ′
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=

1
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N∑
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E
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T∑
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)
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and, thanks to assumption 3,

1
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E
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N∑
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(
Ẍ′

iẌj
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=
1
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E
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N∑
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(
Ẍ′
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Ẍ′
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1

N2T 2
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N∑
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N∑
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T∑
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T∑
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T∑
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= O
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.

For Q4 we have

1

N
Q4 = − 2

N
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N∑
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ü′
iüj

(
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2
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,

Since
1
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N∑
j=i+1

ü′
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′
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1
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ü′
iüjẌ

′
iüj
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we have, thanks to independence of {ui}, that

1

N2T 2
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N∑
j=i+1

ü′
iüjẌ
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iüj
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1
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ü′
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.

But E
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ü′
iüjẌ
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iüj

)2
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)
, since
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T∑
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T∑
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2
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2
it′
)

+
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T∑
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T∑
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=
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T∑
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E
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ü2itü

2
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2
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2
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+
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T∑
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(
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2
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+
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which is O
(
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)
, and therefore Q4 = Op

(
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)
.

Q5 is similar to Q4.

For Q6 we have

1

N
Q6 =

2

N
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N∑
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ü′
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where again using the same arguments as for Q4 we obtain Q6 = Op

(
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T

)
.

Q7 is similar to Q6.

For Q8 we have

1

N
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The second moment of 1
NT

∑N−1
i=1

∑N
j=i+1 Ẍ

′
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′
iẌj is O(T ), since
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for some constant C. Hence Q8 = Op

(
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.

Q9 behaves similarly to Q8.

Now we may analyse Q10.
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Plugging the latter into the expression for Q10 we obtain
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which together with σ̂2
ij

σ̂2
i σ̂

2
j
=

σ̂2
ij

σ2
i σ

2
j
+

σ̂2
ij

σ̂2
i σ̂

2
j
− σ̂2

ij

σ2
i σ

2
j

can be written as

1

N
Q10 = − 1

N

N−1∑
i=1

N∑
j=i+1

T
σ̂2
ij

σ2
i σ

2
j

(
1−

1
T ü
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jüj

σ2
i σ

2
j

−
Bj

(
1
T ü
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iüi

)
+Bi

(
1
T ü
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jüj

σ2
i σ

2
j

)

− 1

N

N−1∑
i=1

N∑
j=i+1

T
σ̂2
ij

σ2
i σ

2
j

(
Bj

(
1
T ü
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.

Proof of Lemma 2

For item 1, we have
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1

N
√
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where the summation over the first term is by assumption c2τ + o(1) and the summation over the second

and third terms is op(1) with stationarity and bounded 4th moment assumption on f t.

For part 2 we have
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C which in turn implies that S2 = Op

(
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)
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S3 is dealt with in a manner similar to S2.

For S4, we have
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Using similar arguments, S5 up to S9 are then all shown to be op(1).

Proof of Proposition 1

We have that
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Ẍ′
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ü′
iẌj
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iüjü
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with Ak,ij defined implicitly. Write now
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=
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− 1
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10∑
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Qk,

where the rest terms Qk, k = 1, . . . , 10, are shown in Lemma 1 to be op (N) under the weaker conditions

of individual-unit estimation. Therefore

1√
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ij
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Let now µi = E(ui,t) = σi E (ϵi,t) + λ′
i E (f t) and write

T
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T
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T (ūi − µi) (ūj − µj)
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We show below that 1√
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(
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)
under our rate

restrictions, so the result follows if the second and third terms on the r.h.s. vanish. We examine the

vanishing terms in turn.

With F̃ stacking f̃
′
t = f ′

t − E
(
f ′
t

)
and ϵ̃i stacking ϵi,t − E (ϵi,t), we have
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It is then not difficult to show that the expectation of the leading term on the r.h.s. is Op

(
N
T 2

)
. Moreover,

since bi and bj are zero-mean independent quantities, and also independent of akl for any i ̸= k, j ̸= l it

can be seen that the products aijbibj are pairwise uncorrelated and, given the moment requirements on

ϵ̃i,t, also have finite variance. Therefore,
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where the individual variances on the r.h.s. are in turn O
(
T−1

)
. Therefore, Chebyshev’s inequality

ultimately leads to
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To complete the analysis, note that the leading term of T (ūi − µi)
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so, thanks to Markov’s inequality,
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under our rate conditions.

Importantly, the expectation of this term is given by
√

N(N−1)

2T , which justifies the first component of

the finite-sample correction proposed in (5). The second component of the correction is obtained from

Lemma 1, stemming from the leading term of Q1 +Q2.

To conclude, we have
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leading to the desired result.

Proof of Proposition 2

We closely follow the proof of Proposition 1 and obtain similarly
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iüjü
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Ẍ′

iẌj
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where Q̃1, . . . , Q̃10 are defined analogously to the terms in the proof of Proposition 1 but are computed

using β̂i,τ rather than a pooled slope coefficient estimator. Thanks to Lemma 1, we obtain that
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under our rate conditions. The result follows using the same arguments as in the proof of Proposition 1.

Proof of Proposition 3

We focus w.l.o.g. on the case of individual-unit estimation. Then, like in the proof of Proposition 2, we

have
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where the disturbances ui,t,τ = σiϵi,t are the same for all τk, and therefore
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for any finite K; the result follows.

Appendix C - Data sources, and additional empirical

results and figures
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Table C2: Country specific QR estimation results

τ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DE αi,τ 0.018∗∗∗ 0.017∗∗∗ 0.025∗∗∗ 0.024∗∗∗ 0.021∗∗∗ 0.019∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.014∗∗∗

β1i,τ −0.227∗∗∗ −0.150∗ −0.198∗∗ −0.281∗∗∗ −0.221∗∗∗ −0.199∗∗∗ −0.238∗∗∗ −0.375∗∗∗ −0.219
β2i,τ 0.025 0.018 −0.002 −0.021 −0.024 −0.003 0.006 0.045∗ −0.080∗∗∗

β3i,τ 0.180 0.146 0.118∗ 0.046 0.052 0.027 −0.022 0.122∗ 0.187∗∗

β4i,τ −0.373∗∗∗ −0.310∗∗∗ −0.383∗∗∗ −0.299∗∗∗ −0.214∗∗∗ −0.156∗∗∗ −0.185∗∗∗ −0.015 0.228∗∗

β5i,τ 0.031 −0.018 −0.004 −0.048 −0.120∗∗ −0.151∗∗∗ −0.123∗∗ −0.274∗∗∗ −0.534∗∗∗

FR αi,τ −0.017 −0.002 −0.012 0.017 0.035∗∗ 0.029∗∗ 0.029∗∗ 0.043∗∗∗ 0.045∗∗

β1i,τ 0.861∗∗∗ 0.928∗∗∗ 0.818∗∗∗ 0.405∗∗ 0.270 0.280 0.193 −0.111 −0.170
β2i,τ 0.166∗∗∗ 0.146∗∗∗ 0.082∗∗∗ 0.093∗∗∗ 0.143∗∗∗ −0.001 −0.026 −0.018 0.018
β3i,τ 0.028 0.165∗ 0.339∗∗∗ 0.397∗∗∗ 0.302∗∗ 0.383∗∗ 0.487∗∗ 0.545∗∗∗ 0.451
β4i,τ 0.159 −0.027 0.043 −0.226∗ −0.368∗∗∗ −0.292∗ −0.272∗∗ −0.405∗∗∗ −0.339
β5i,τ −0.351∗∗∗ −0.205∗∗∗ 0.020 0.072 0.060 0.096 0.109∗ 0.178∗∗∗ 0.104

IT αi,τ 0.000 0.005 0.013∗∗∗ 0.012∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.011∗∗∗ 0.021∗∗∗

β1i,τ 0.403∗∗∗ 0.216 0.347∗∗∗ 0.337∗∗∗ 0.243∗∗∗ 0.199∗∗∗ 0.097 −0.009 −0.006
β2i,τ 0.080∗∗∗ 0.020 −0.002 0.007 0.029 0.042∗ 0.048 −0.003 −0.002
β3i,τ 0.288∗∗∗ 0.317∗∗∗ 0.307∗∗∗ 0.350∗∗∗ 0.342∗∗∗ 0.347∗∗∗ 0.381∗∗∗ 0.349∗∗∗ 0.186∗∗∗

β4i,τ −0.099 −0.101∗ −0.156∗∗∗ −0.133∗∗∗ −0.150∗∗∗ −0.130∗∗∗ −0.156∗∗∗ −0.062 −0.085∗∗

β5i,τ −0.224∗∗∗ −0.286∗∗∗ −0.317∗∗∗ −0.283∗∗∗ −0.197∗∗∗ −0.229∗∗∗ −0.159∗∗∗ −0.093 −0.170∗∗∗

ES αi,τ −0.005 0.015 0.013 0.011 0.009 0.010∗ 0.023∗∗∗ 0.026∗∗∗ 0.040∗∗∗

β1i,τ 0.215 0.505∗∗∗ 0.550∗∗∗ 0.183 0.060 −0.011 −0.189∗∗ −0.186 −0.053
β2i,τ 0.178∗∗∗ 0.172∗∗ 0.213∗∗∗ 0.171∗∗∗ 0.165∗∗∗ 0.154∗∗∗ 0.132∗∗∗ 0.145∗∗∗ 0.100∗∗∗

β3i,τ 0.357∗∗ 0.042 0.058 0.198∗∗∗ 0.255∗∗∗ 0.280∗∗∗ 0.199∗∗∗ 0.259∗∗∗ 0.223∗∗∗

β4i,τ −0.075 −0.153∗ −0.092 −0.040 0.001 0.012 −0.040 −0.060 −0.126∗∗∗

β5i,τ −0.306∗∗∗ −0.097 −0.172 −0.217∗∗ −0.229∗∗∗ −0.277∗∗∗ −0.220∗∗∗ −0.084 0.025

NL αi,τ 0.003 0.003 0.007 0.008 0.005 0.014∗∗∗ 0.017∗∗∗ 0.023∗∗∗ 0.030∗∗∗

β1i,τ 0.142 0.139 0.143∗ 0.124 0.089 −0.001 −0.061 −0.137∗∗ −0.048
β2i,τ 0.153∗∗ 0.108∗∗∗ 0.103∗∗∗ 0.082∗∗∗ 0.049∗ 0.067∗∗∗ 0.080∗∗∗ 0.033 0.010
β3i,τ 0.095 0.213∗∗∗ 0.252∗∗∗ 0.240 0.296∗∗∗ 0.288∗∗∗ 0.346∗∗∗ 0.470∗∗∗ 0.382∗∗∗

β4i,τ −0.117 −0.036 −0.034 −0.022 0.076 −0.019 −0.030 −0.080 −0.165
β5i,τ −0.258 −0.224∗∗ −0.325∗∗∗ −0.239 −0.176∗ −0.183∗ −0.203∗∗∗ −0.231∗∗∗ −0.146∗

IE αi,τ 0.016∗ 0.016∗ 0.007 0.011 0.011∗ 0.019∗∗∗ 0.030∗∗∗ 0.025∗∗∗ 0.020∗∗

β1i,τ 0.055 0.004 −0.020 0.039 0.075 0.043 0.005 0.013 0.017
β2i,τ 0.114∗∗∗ 0.136∗∗∗ 0.174∗∗∗ 0.174∗∗∗ 0.126∗∗∗ 0.117∗∗∗ 0.071∗∗ 0.061∗∗ 0.061
β3i,τ 0.137 0.157∗ 0.120 0.067 0.142 0.142 0.113 0.158∗ 0.245∗∗

β4i,τ −0.281∗∗∗ −0.250∗∗ −0.032 −0.054 0.053 −0.005 −0.003 0.104 0.421∗∗∗

β5i,τ −0.595∗∗∗ −0.427∗∗∗ −0.223∗∗ −0.127 −0.257∗∗ −0.196 −0.288∗∗ −0.363∗∗∗ −0.662∗∗∗

PT αi,τ −0.009∗∗ −0.004 0.003 0.005 0.005 0.006 0.011∗∗ 0.016∗∗ 0.029∗∗∗

β1i,τ 0.357∗∗∗ 0.341∗∗∗ 0.248∗∗ 0.082 0.198 0.181 0.394∗∗∗ 0.230 0.463∗

β2i,τ 0.001 0.040 0.046 0.096∗∗∗ 0.137∗∗∗ 0.100∗∗∗ 0.064 0.114∗ −0.014
β3i,τ 0.079∗ 0.032 −0.009 −0.025 −0.021 0.069 −0.003 −0.014 −0.068
β4i,τ −0.062 −0.066 −0.106∗∗ −0.063 −0.023 0.008 −0.010 −0.013 −0.018
β5i,τ −0.006 0.014 0.010 −0.019 −0.050 −0.124∗ −0.138∗ −0.139 −0.289∗∗∗

BE αi,τ 0.004 0.000 −0.007 −0.014∗ −0.007 −0.005 −0.003 0.007 0.010
β1i,τ −0.098 −0.077 −0.002 −0.035 0.001 0.110 0.100 0.185 0.039
β2i,τ −0.036 −0.006 0.049 0.033 0.029 0.018 0.036 0.029 0.053
β3i,τ −0.017 0.000 0.008 0.025 0.042 0.058∗∗ 0.059∗∗ 0.086∗∗∗ 0.021
β4i,τ −0.071 −0.003 0.137 0.251∗∗ 0.153 0.143 0.147 0.051 0.129
β5i,τ −0.145∗∗ −0.046 −0.100∗ −0.051 0.101 0.123∗∗ 0.086 0.093 −0.020

FI αi,τ −0.040∗∗∗ −0.023∗∗∗ −0.028∗∗∗ −0.029∗∗∗ −0.028∗∗∗ −0.028∗∗∗ −0.029∗∗∗ −0.037∗∗∗ −0.041∗∗∗

β1i,τ 0.102 0.003 −0.084∗∗ −0.068 −0.020 0.052 0.063 0.076 0.030
β2i,τ 0.061∗∗ 0.056∗∗ 0.040∗ 0.034 0.012 −0.024 −0.041 −0.048∗ −0.042
β3i,τ 0.320∗∗∗ 0.250∗∗∗ 0.324∗∗∗ 0.377∗∗∗ 0.185∗ 0.312∗∗∗ 0.280∗∗∗ 0.381∗∗∗ 0.447∗∗∗

β4i,τ 0.387∗∗∗ 0.217∗∗∗ 0.294∗∗∗ 0.312∗∗∗ 0.328∗∗∗ 0.351∗∗∗ 0.392∗∗∗ 0.506∗∗∗ 0.623∗∗∗

β5i,τ −0.361∗∗∗ −0.136 −0.112 −0.135 0.057 0.078 0.069 0.002 −0.177

UK αi,τ −0.002 0.001 0.004 −0.003 −0.005 0.000 −0.009 −0.012∗∗ 0.000
β1i,τ −0.152 0.122 0.004 −0.216 −0.111 −0.056 −0.029 0.068 0.003
β2i,τ 0.114∗∗∗ 0.149∗∗∗ 0.101∗∗∗ 0.058∗∗ 0.058∗∗ 0.014 0.002 0.004 −0.003
β3i,τ 0.393 0.290∗ 0.295∗∗∗ 0.470∗∗∗ 0.491∗∗∗ 0.454∗∗∗ 0.569∗∗∗ 0.600∗∗∗ 0.643∗∗∗

β4i,τ −0.166 −0.114 −0.126 0.032 0.102 0.056 0.254∗∗∗ 0.319∗∗∗ 0.156∗

β5i,τ 0.038 0.034 0.136∗∗ 0.203∗∗∗ 0.230∗∗∗ 0.304∗∗∗ 0.342∗∗∗ 0.352∗∗∗ 0.484∗∗∗

US αi,τ 0.017∗∗∗ 0.018∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.020∗∗∗

β1i,τ −0.274∗∗∗ −0.197∗∗∗ 0.065 0.108∗∗ 0.095 0.184∗∗∗ 0.193∗∗∗ 0.166∗∗∗ 0.032
β2i,τ 0.324∗∗∗ 0.269∗∗∗ 0.232∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.113∗∗∗ 0.077∗∗∗ 0.046∗∗∗ 0.011
β3i,τ 0.441∗∗∗ 0.297∗∗∗ 0.248∗∗∗ 0.207∗∗∗ 0.282∗∗∗ 0.272∗∗∗ 0.271∗∗∗ 0.312∗∗∗ 0.201∗∗∗

β4i,τ −0.376∗∗∗ −0.243∗∗∗ −0.195∗∗∗ −0.126∗∗∗ −0.084∗∗ −0.081∗∗ −0.038 −0.006 0.041
β5i,τ −0.129∗∗∗ −0.154∗∗∗ −0.122∗∗ −0.107∗∗∗ −0.148∗∗∗ −0.184∗∗∗ −0.187∗∗∗ −0.207∗∗∗ −0.197∗∗∗
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Figure C1: Quarterly change in log real house prices, conditional median and conditional
10th and 90th percentiles.




