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Abstract

Thispaperarguesthatcross-sectionaldependence (CSD)isan indicatorof misspecificationin panel
quantile regression (QR) rather than just a nuisance that may be accounted for with panel-robust
standard errors. This motivates the development of a novel test for panel QR misspecification
based on detecting CSD. The test possesses a standard normal limiting distribution under joint
N, T asymptotics with restrictions on the relative rate at which N and T go to infinity. A finite-
sample correction improves the applicability of the test for panels with larger N. An empirical
application to housing markets illustrates the use of the proposed cross-sectional dependence test.
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1 Introduction

Compared to cross-sectional data, panel data analyses offer the opportunity to deal with
data issues such as unobserved heterogeneity. Similarly, typical difficulties arising in
time series contexts, say short samples and instabilities, may also be sidestepped in a
panel setup. Panel data however prompt specific challenges, of which cross-sectional error
dependence is among the more important ones. Cross-sectional dependence may arise
for various reasons, most prominently due to global shocks affecting several units at the
same time. The dramatic effects on the asymptotic and finite-sample properties of the
least-squares |LS| estimator and standard inferential procedures have been discussed in
the literature; see e.g. Andrews (2005). In particular, should the regressors correlate with
the global shocks, endogeneity is expected to bias the LS estimator. Even if endogeneity is
not an issue,! the variances of the panel estimators are typically affected by the presence
of cross-sectional dependence. Therefore, detecting and accounting for cross-dependence
is a necessary step in panel data analyses. This step is by no means a secondary one;
see, for instance, Pesaran (2004), the survey of Chudik and Pesaran (2015) or Bai et al.

(2016) and references therein.

A strand of panel literature gaining momentum is dedicated to panel quantile regressions
|[QR]; see, for instance, Koenker (2005, Section 8.7) or Chernozhukov et al. (2013). For
early applications of quantile panel data methods, see, among others, Abrevaya and Dahl
(2008); Kniesner et al. (2010); Gamper-Rabindran et al. (2010); Covas et al. (2014);
Binder and Coad (2015). More recently, Zhu et al. (2016) use panel QR to analyse the
impact of foreign direct investment (FDI), economic growth and energy consumption on
carbon emissions in five selected member countries in the Association of South East Asian
Nations; Martinez-Zarzoso et al. (2017) investigate whether aid for trade leads to greater
exports in recipient countries; Opoku and Aluko (2021) use it to analyse the heterogeneous
effect of industrialization on the environment; Barunik and Cech (2021) investigate how to
measure common risks in the tails of return distributions using panel QR, while Brownlees

and Souza (2021) and Nandi (2022) take a panel route to multi-country Growth-at-Risk.

!See Kapetanios, Serlenga, and Shin (Kapetanios et al.) for a recent test of factor exogeneity.



On the theory side, the asymptotic analysis provided by Kato et al. (2012) emphasizes
the role of the relation between the time and cross-sectional dimensions of the panel.
Harding and Lamarche (2014) allow for a factor structure in the disturbances (see also
Pesaran, 2006 and Bai, 2009) where factors, loadings and regressors are not independent,
and propose a suitable IV estimator (see also Harding et al., 2020). Still, in spite of the
increased use and development of QR methods, the effect of cross-sectional dependence

in panel QR has to date not been fully explored yet.

This paper’s contribution to the literature is two-fold. First, we argue that cross-sectional
dependence is far less benign in QR than in LS regressions. Concretely, we show that
a factor structure in the errors may induce asymptotic bias in the panel QR slope pa-
rameter estimators even if the factors and loadings are independent of all other model
components — unlike LS under the same circumstances. The explanation for this per-
haps counter-intuitive finding is that the omitted factors shift the conditional quantile
of the idiosyncratic errors in a way that does depend on the regressors in general, and
thus have an indirect confounding effect on the panel QR estimator. In the LS regression
framework, only the standard errors are affected under such exogeneity scenarios, and
panel-robust standard errors (Arellano, 1987; Driscoll and Kraay, 1998) are widely used
in practice to deal with cross-correlation. However, QR counterparts of clustered stan-
dard errors (see Parente and Santos Silva, 2016; Yoon and Galvao, 2016) only account for
cross-sectional error dependence if cross-dependence does not induce asymptotic biases in

the slope coefficient’s estimators.

Second, we discuss ways of testing the null hypothesis of no cross-sectional error depen-
dence in panel QR models. Apart from their original use as detectors of cross-sectional
dependence (say in order to decide on whether to use the usual or panel-robust standard
errors), such procedures also play the important role of misspecification tests in panel QR.
In LS regression models, a factor structure of the errors only causes endogeneity bias if
the factors correlate with the regressors. Since, as we show here, biases may arise in panel
QR irrespective of any dependence between common error components and regressors, any
form of cross-dependence is therefore indicative of misspecification. A cross-dependence

test is not a replacement for standard specification procedures such as Hausman tests.



The latter are however more demanding, requiring the existence of exogenous instruments
which may be costly to obtain. Therefore, detecting cross-sectional dependence is a rea-
sonable and convenient model check, and, in this sense, we provide a procedure which
complements standard specification tests. It should of course be emphasized that, when
cross-sectional dependence is found, one should resort to estimation methods accounting

for its presence; see e.g. Harding and Lamarche (2014) and Chen et al. (2021).

We proceed as follows. In Section 2, we illustrate the biasing effect of ignoring cross-
sectional dependence on fixed-effects panel QR; the effect appears even if factors and
loadings are strictly exogenous, which is in stark contrast to the LS case. Moreover, the
arguments extend to nonlinear GMM panel procedures, indicating that panel LS esti-
mation is rather the particular case where cross-dependence is benign under exogeneity
of the common error components. We then discuss in section 3 the adaptation of the
residual-based Breusch-Pagan test (Breusch and Pagan, 1980) of no cross-sectional de-
pendence to the QR framework of this paper, provide joint NV, T asymptotics and propose
a finite-sample correction. The proposed cross-sectional dependence tests are valid for
panel QR estimators satisfying weak regularity conditions. Section 4 analyzes the finite-
sample properties of the new tests, and we illustrate our procedures in an application
to housing markets in Section 5. The final section concludes, and technical proofs of the
results stated throughout the paper are provided in an appendix, together with additional

empirical findings.

2 Effects of cross-sectional dependence

We are interested in the 7th conditional quantile of y; ; and consider the “structural” model

Yie = Qir + Bris + Uigs (1)



where the subscript 7 on the model parameters indicates that coefficients may change

across quantiles. The disturbances ;. have a factor structure such that,

Ustr = A;,vat + Eit,re (2)

Such common components may arise e.g. due to global shocks or even omitted variables.
The idiosyncratic errors €;,, have zero 7-quantile conditionally on x;,, V j = 1,..., N
and s = 1,...,T. Factor models of this type have been recently discussed by Chen et al.

(2021); see also Tran et al. (2019) for a less parametric approach.

Irrespective of the concrete estimation method used, the asymptotic properties of the
estimators B3, of the slope coefficients in (1) rely on a correct model specification in which
the “aggregate” errors w;, . have zero conditional 7th quantile given the regressors x; ;.
This is, however, not guaranteed to occur in error models of the kind formulated in (2),

even if the unobserved variables f, are strictly exogenous.

To illustrate the fact that cross-dependence, as induced by the latent component f,, may
have unexpected effects in the panel QR in (1), let us focus on the simplest model with
one regressor and a scalar factor, whose impact, for simplicity, does not depend on the
quantile, X; ; = \;, i.e.,

Yit = s+ Brxiy + Nify + €ir

Furthermore, let {f;} be independent of {e;; .}, {x:+} and the fixed effects {a;}. Just
to make the point, take €, to be normal (conditionally on the regressors x) with mean
m;, and variance Jzt, and let f, be normal with mean m and variance o?. Note that it
must hold that

Mt + 2,04 =0

for the conditional 7-quantile of €;;; to be zero, where z; is the 7-quantile of the stan-
dard normal distribution. Clearly, the setup of this illustration is quite specific, if not
oversimplifying. At the same time it pinpoints the impact of cross-sectional dependence

in panel QR regressions with minimal technical effort.

Under these conditions, w; , is (conditionally) normal as well. Denote the corresponding



conditional 7-quantile by ¢; ., which obtains as

Qitr = Mg + MmN + 274/ Ugt + No2,

There is no omitted variable bias whenever this conditional quantile does not depend on

the regressor x. However, it holds that

Qitr = Mip+ 2.0 +mA + 2, <\/ UZt +Ajo? — Uz‘,t>
= m\ + z, <1 /azt + /\fﬂg - Ui,t) )

where we used the fact that m;; + z;0,+ = 0. The first component, mJ;, is absorbed into
the fixed effect o, as long as m does not depend on z (which we excluded to make the
point). Should the second component of ¢;; . also not depend on ¢, there is no omitted
variable bias, at least not in the slope coefficient estimators (the fixed effects are treated
here as nuisance parameters and any bias in the fixed effects estimators may thus be
ignored). Moreover, there is no bias in the slope coefficients whenever z, = 0, i.e. for

median regressions in this example.

But, apart from the case z; = 0, one may expect effects on the conditional quantile of the
Ui+ -, when the g;, . are systematically heteroskedastic. If conditional heteroskedasticity

is present, say UiQ,t = aﬁt (xi+), the conditional quantiles of the errors u;; .,

Qitr = MA; + 2, <\/Uzt (@ir) + )\1202 — Ot (%t)) )

depend explicitly on z; ¢, and the linear QR model y; ; = «; .+ 5Lx; s +error is misspecified.

Effectively, one is dealing with an artificially induced nonlinear functional form, since the

data generating process is,

P <yi,t <ci+Brxig+ 2 (\/Uzt (zig) + Aio? — 05y (Jht))) =T.

At the same time, (1) specifies a linear model to be fitted, resulting in misspecification

bias.



The resulting bias of the slope parameter estimators depends on the strength of the cross-
sectional dependence (as captured by the nonzero \;) and on the marginal distribution
of the regressors. Moreover, its magnitude is expected to be larger for more extreme

quantiles.

Remark 1. Such effects have been noticed before in a more restricted context: for
instance, quantile fixed effects regressions and quantile random effects regressions do not
estimate the same quantity (see e.g. the discussion in Galvao and Poirier, 2019). In a
similar vein, Hausman et al. (2021) discuss the estimation of QR models with measurement
errors in the dependent variable. Ultimately, the issue boils down to the quantile not being

a linear operator, unlike the expectation. &

Remark 2. One may obtain more concrete statements on the misspecification bias if

considering “small” loadings A;. Concretely, as A\; — 0,

2 <,/0-2 + \202 — 0; ) =z i—i—o(kz)
T 2,t 7 7,0 7'20_1;7t (a’:z,t) 7 )

so, assuming e.g. that o;; (z;;) = v/x;; with 2;; > 0 a.s. and \; = A\, we obtain errors

u; ¢~ having conditional quantile

2,2 ,
Qit,r = MA; + erﬁz’,t +o0 ()\ ) )

which, under regularity conditions ensuring v/ NT-consistency of BT, suggests that

\2o?

33 — _ o (N L
B.—0B.—z % _O()\)—FOP(\/W)‘

The conclusion (with a different expression for the bias) arguably holds for more general

forms of heteroskedasticity and also for non-normal errors. For instance, should o;; be
a function of time rather than depend on z;,, cross-sectional dependence would induce a
time trend at the 7th quantile. Furthermore, we note that already a magnitude order of

N~YAT=1/4 for the loadings \; may lead to such (2nd-order) biases in the Gaussian case.

¢



Remark 3. The same line of argumentation indicates that GMM panel estimators
based on moment conditions that are nonlinear in the errors are affected by cross-sectional
dependence in a similar manner. Finally, the effect of ignored dependence is expected to
be similar for nonlinear panel QR models, even if an exact quantification is more difficult

than in the presented linear panel QR example.
&

It may be seen that the biasing effect of ignored cross-dependence is not specific to pooled
estimation, since the shift in the conditional error quantile would equally affect individual-
unit estimation, and in fact in a unit-specific way depending on the loadings \;. Relatedly,
we also note that ignored slope coefficient heterogeneity may induce cross-dependence too,

e.g. when regressors are cross-dependent themselves.

Summing up, detecting cross-sectional dependence in panel QR is of paramount impor-
tance in applied work. The following section discusses a test of no cross-sectional depen-

dence for specific use with panel QR.

3 Tests of cross-sectional dependence in panel QR

Should one observe the disturbances u;; , directly, one may actually use any of the avail-
able tests for cross-sectional dependence. We shall build on the familiar Breusch-Pagan
[BP] test based on the sample correlations of all unique pairs (u; ., w;¢-), @ # j.2 Then,
plugging in residuals for the unobserved regression errors is the natural way to proceed.
The classical BP test resorts to LS residuals; here, however, one should rather employ QR
residuals. This is because slope coefficients may well be quantile-specific, and we would
thus take into account the fact that cross-sectional dependence may have different effects

at different quantile levels. We consider pooled estimation first (allowing for fixed effects)

2 In the above Gaussian example, the BP test is a Lagrange multiplier test, so we may argue in its favor
using Gaussian quasi-likelihood arguments. Also, the BP test is readily implemented in many software

packages.



and deal afterwards with slope parameter heterogeneity by means of individual-unit esti-
mation. In fact, we do not focus on a particular choice of panel QR estimators, but rather
require mild high-level assumptions on their convergence rates in a large-N large-T" setup.
This allows for a flexible use of the proposed test of no cross-dependence in panel QR

practice.

We draw in the following on the large literature on tests for cross-sectional dependence
in LS panels boosted by the seminal paper of Pesaran (2004). Some of the technical

assumptions we make follow in fact this literature.

The proposed test statistic is constructed as follows:

1. Estimate a fixed-effects QR at the relevant quantile 7,
A - , A
Yig = Qir + Brxis + Uiy r.

2. Compute the pairwise correlation coefficients of the residual series,

Zz;l (ﬁi,t,ﬂ' - aiﬂ') (ﬁj,tﬂ' - ﬁj,‘r)

VEL (e — 107)* S0 (0 — )

Pijr

Y

~ _ T ~
where 4, , =T 1>, iy

Given that — unlike fixed-effects LS residuals — the QR residuals 1, , are not neces-
sarily centered at zero, with the mean depending on the quantile level 7, unit-wise
demeaning is necessary. This results in a slightly different statistic compared to the

original BP test.

3. The test statistic is then given as,

1 N—-1 N
To= T, —1). (3)
N(N—l)g;l( )

Since the BP-type statistic in (3) aggregates squared cross-correlations, the test rejects
for large positive outcomes of 7. In the following, we show the limiting null distribution

of T, to be standard normal, regularity conditions provided:



Assumption 1 Under the null hypothesis, the errors follow the multiplicative component
structure u; ;. = 0,64, where o; are positive constants bounded and bounded away from
0, and €;; are independent of x;; and #d across i and t with absolutely continuous pdf f

and unity variance.

The independence assumption for the errors under the null is quite common in the lit-
erature on testing for no cross-sectional dependence; see e.g. Baltagi et al. (2012). The
dependence on the quantile level 7 enters the model via quantile-specific regression co-
efficients. The continuity requirement for the pdf f is specific to the QR literature and
allows, among others, for a characterization of the QR estimators. The assumption fur-
thermore allows for error variance heterogeneity in the cross-sectional dimension. The
unity variance requirement is a standard requirement for the standardized errors in the
case of the BP test. While we do not pursue the topic of error variance heterogeneity in
the time dimension here, we note that a robust version of the BP test following Halunga

et al. (2017) may be considered instead of the classical form in (3).

The 7-quantile of the disturbances u;; . is given under the null hypothesis by o,q,, with
¢- denoting the 7-quantile of €;; as usual, this may be incorporated into the fixed effects
«; to ensure identification of the slope coefficients. Under cross-sectional dependence, we

focus on sequences of local alternatives as follows.

Assumption 2 Under the alternative hypothesis, let u;;, = 064 + ’\;,wa where
%Z;‘F:lftfg LS, > 0 e T — oo and N, = T VANV, . with

— N N 2
N~? Zi:l Zj:i-{-l (Eg,fzfej,r) — Cz < 0.

We note that such a local alternative corresponds to moderate cross-sectional dependence
in the sense of Bailey et al. (2016). Furthermore, note that we consider local alternatives in
N—V/AT=1/4 neighbourhoods of the null, and Section 2 argues that already such relatively
weak cross-dependence may lead to panel QR bias. Of course, the rates for the local power
follow from the structure of the test statistic. Finally, the loadings are not restricted to

be homogeneous across different quantile levels.

10



Assumption 3 The regressors x;; have uniformly bounded 8th order moments, and sat-
isfy % Z;‘FZI (i — ) (xip — 7)) B 5, wniformly ini =1,..., N, with ; positive defi-

nite matrices with eigenvalues uniformly bounded and bounded away from zero.
For the pooled fixed-effects QR estimator, we only require a high level representation.

Assumption 4 Let the following Bahadur-type representation hold under the null and

the local alternative as N, T — oo,

(@it — &i) ¥r (Wig,r — 0igr) + Ryt
1
(4)
where Ry = O,(1) and 1, is the generalized sign function, ¥, (u) = 7 — I(u < 0) with

N T

5 1 N1 oy
\/ﬁ(/ﬁr —BT> = (N;Uif(qf)zz) TZ

N

=1t

I(-) the usual indicator function.

This is the Bahadur representation for a linear model; see Kato et al. (2012), which is
the consequence of the Assumptions 1 and 2. No explicit conditions at all are placed on
the estimators of the fixed effects @;.; they are washed out from the cross-dependence
statistic when demeaning the residuals ;.. Of course, consistency of ,37 as implied by
Assumption 4 is often related to the behaviour &;, so in fact we do impose an implicit

condition on the fixed-effects estimator.

Assumption 4 implies under the null — and in the local alternative setup — that BT -3, =
O, (1 / VNT >, where v/ NT is the usual convergence rate of pooled or fixed-effects slope
coefficient estimators. We note that Ryt in (4) need not be centered at zero, so estimators
exhibiting 2nd order bias (as is the case in Remark 2) may be employed in our framework.
Even so, the behavior of Ryt is not trivial (see Kato et al., 2012) and may require
additional restrictions on N and 7. We only formulate high-level assumptions here to

allow for tractable analysis of the proposed cross-sectional dependence test.

We are now in a position to state the following proposition regarding the limit distribution

of the test statistic in (3) under the null and the considered local alternatives.

Proposition 1 Under Assumptions 1-4, as N, T — oo with N/T — 0, it holds that

T: &N(cﬁ,l)

11



where ¢ is as defined in Assumption 2.

Under the null (¢2 = 0), this collapses to the standard normal distribution and we may
therefore reject the null hypothesis of no cross-sectional dependence at asymptotic size «

if 7. exceeds the 1 — a quantile of the standard normal.

Plugging in estimates #;, , for the unobserved ;. has consequences on the finite-sample
behaviour of the BP test if N is moderately large or large relative to T'. This is in fact the
case for LS residuals too, see e.g. Pesaran et al. (2008) and Baltagi et al. (2012). Since
rate restrictions are difficult to check in practice, we suggest a finite-sample refinement
based on an evaluation of vanishing components of 7. Concretely, it can be seen from the
proof of Proposition 1 (see Appendix B) that most finite-sample distortions are induced
by two asymptotically negligible terms (whose expectation is computed in the appendix),

and we suggest the use of the corrected statistic,

) NIN=1) +(1—7)N=1)
[ A TP R S o

The unknown density f of the standardized disturbances at the 7th quantile may be

estimated using the pooled standardized residuals under the null, é;; = u;,,/6;, where

0, = \/ T-1 Zthl (Uipr — ﬂ”)z. Importantly, note that the residuals ;. , have approxi-
mately zero 7th quantile by construction, such that one should estimate their density at
zero. In particular, we use a standard kernel density estimator [KDE] to this end. Also,
consistency &; ; is required for this finite-sample correction. See Section 4 for recommen-

dations on the choice of bandwidth.

Remark 4. Under the imposed rate restriction N/T" — 0, we have —VNz(g_l) — 0, such

that 7, and 7, are asymptotically equivalent. The first term of the proposed correction
is quite similar to that derived by Baltagi et al. (2012) for no error cross-correlation in
a classical fixed-effects homogeneous panel data model, and essentially offsets terms that
stem from demeaning the residuals. The second term is specific to the QR setup, and is

designed to capture some of the level-specific effects of the slope coefficient estimation. <>

12



If considering individual-unit estimation, we obtain the same limiting behavior if Assump-

tion 4 is modified, as in Assumption 5 below, to allow for individual-unit QR estimation.

Assumption 5 Let the following Bahadur representations hold as N, T — oo,

VT (Bw - /Bi,r) = (%f(qT)Z?i) _ % > (@i — i) e (winr —0ige) + Rir (6)

)

where there exists § > 0 such that max,<;<y || Rir| = O, (N©®TD/2).

We note that, given the moment restrictions on the regressors @, Assumption 5 implies
a uniform convergence rate of O, <%) for BW; the individual-unit estimators BLT may

of course be v/T-consistent.

The test statistic 7 is modified so that the residuals 4, » are now obtained from individual
regressions, that is,

(1) o ~ ~ 7
Uiy r = Yig — Qe — B 1 Ti g

The following proposition states a trade-off between the uniform convergence rate of the
unit-specific slope coefficient estimators (as characterized by ¢ in Assumption 5) and the
dimensions of the panel: in a nutshell, the more estimation noise, the less cross-sectional
units are allowed for in order to obtain a standard normal limiting distribution of the test
statistics.

N1+26

Proposition 2 Under Assumptions 1-5 and 5, as N,T — oo such that ==

— 0,
holds that
7.9 KN N (c2,1)

where ¢ is as defined in Assumption 2.

When § = 0 (which is in a sense closest to homogeneity in the unit-specific estimation

setup), one recovers the N = o(T') rate from Proposition 1.

The correction proposed in Eq. (5) may be used equally well for 79 and we denote the

corrected statistic based on individual-estimation residuals by T,

13



To conclude this section, we consider a simple portmanteau test for no cross-sectional
dependence at several different quantiles, 7,...,7x. We focus again on the statistics
with finite-sample correction, and let 7:;@ (7}55) ) be the test statistics at quantile 73 as in
(5). Assume that either Assumption 4 or Assumption 5 holds at each of the K quantiles

Tx. The portmanteau statistic is then
| X

(./\;l(i) = % 25:1 ﬁ@) and we again reject for test outcomes exceeding the 1 — a quantile

of the standard normal distribution. Hence, the following proposition can be stated.

Proposition 3 Under the Assumptions of either Propositions 1 or 2, it holds under the
local alternative that

My 5 N (2,1)

and
MY 4N (1),
respectively, where &2 = % Zszl cfk with cfk as defined in Assumption 2.

4 Finite-sample evidence

Building on Pesaran et al. (2008) and Moscone and Tosetti (2009) we follow the setup of

Demetrescu and Homm (2016) and use the following data generating process:
Yig = Qi + B1x1is + Peoin + Uigr, t=1,...,N, andt=1,..,T (8)

where 51 = 85 = 1. Moreover, we simulate regressors which, due to a factor structure,

are correlated across cross-sections,

Ty = fz(,f)%(f) + el(i)t

14



where fﬁf) ~ iid N(0,1) and el(f)t ~ iid N(0,0.1). We set 71(? = 1, but one could
also consider, for example, 'Yz(f) ~ 4idU(—0.2,0.2) with U(a,b) standing for a uniform
distribution on (a,b).* Further, we consider o; ~ #idN(1,1). The quantiles of interest are

taken to be 7 = {0.2,0.5,0.8}.

We consider two scenarios for generating errors. First, we generate w;; , as,

Uigr = €ip F V1 fLY + Yo o2

where €;; ~ itdN(0,1) and independent from all the model variables so that we have
homoskedastic idiosyncratic error terms (the difference between mean and quantile of in-
terest is absorbed in the fixed-effect so centering at the relevant quantile is not necessary).
Further, if 7, . # 0 or 7. # 0, then we will have endogeneity which in turn induces the
estimators of the model parameters to be biased. This serves to evaluate the test under

the null hypothesis. Second, we consider

Uigr = (ei0 = 2) 1+ 0523 + 0503,

where z; is the 7-quantile of the standard normal distribution. Under the latter specifica-
tion, u; ¢, is conditionally heteroskedastic, and dependent across the cross-sectional units,
since x;,; are themselves dependent across the cross-sectional dimension. This serves to

evaluate the proposed tests under the alternative.

The KDE of f(g.) is based on pooled normalized residuals, u;;,/d;, where o; is the
standard deviation of {u;;,}=12 7. (Recall, the residual density should be estimated
at zero and not at ¢, given the centering of the QR residuals.) We use a Gaussian kernel
with a bandwidth of 0.35(NT)~%2. The bandwidth is based on Silverman’s rule of thumb,
where we exploit the fact that the residuals are standardized prior to computing the KDE.

Furthermore, it is smaller than the Silverman bandwidth choice for KDEs, which is due to

3 This alternative design represents low regressor cross-dependence in the setup of Demetrescu and

Homm (2016); however, this does not significantly change the results and we do not report them here.

15



the fact that the KDE of f(g,) is based here on residuals containing estimation noise, and
a certain degree of undersmoothing was found in preliminary simulations to be beneficial

to the finite-sample properties of the test.

We estimate the model unit-by-unit using the conventional QR procedure of Koenker and
Bassett (1978), as well as in a pooled manner using the fixed-effects estimation procedure
proposed by Koenker (2004). Results based on 2000 Monte Carlo replications for each

case are given in Tables 1 and 4 for all quantiles 7 of interest.

Table 1 provides the empirical rejection rates when the idiosyncratic error term is ho-
moskedastic. As expected, the test based on 7, is oversized when T is relatively small,
with distortions being somewhat larger for the individual-unit estimation case. This Table
also shows that '7; provides a good size correction for all quantiles of interest for almost
all {N,T} constellations for pooled estimation of the slope coefficients. Exceptions are
observed when 7 = 0.2 and 7 = 0.8 with N = 100 and 7" = 10 where the rejection rate
of 7~; turns out to be 8.1% and 8.3%, respectively. The resulting size control observed for
the individual-unit estimation is effective in general too, but is sensitive to cases when

N/T is bigger than 2. Further, when we observe size distortions for the individual-unit

estimation, then these turn out to be larger when 7 = 0.5 compared to 7 = 0.2 and 0.8.

Table 1 also reports the rejection rates for the portmanteau statistic, /\73, which we
calculate using the corrected statistic 7~; computed at the quantiles 7 = {0.2,0.5,0.8}.

The observed behavior of Mv3 is in line with that of the tests for individual quantiles.

Table 4 shows that the tests reject more often than under the previous scenario. This
is not surprising since u;; , is cross-sectionally dependent through its dependence on z;,
(which is in turn cross-sectionally dependent). Also, the rejection frequencies increase as
either N or T' grow, apparently faster in N than in 7. Both 7, and its corrected version
7. are able to detect cross-sectional error dependence (where of course the corrected
version should be preferred on the basis of the improved size control). The conclusions
regarding the portmanteau statistic, Mvg, are qualitatively the same. While the tests are,

expectedly, not able to pin down the source of dependence, they are clearly indicative of

misspecification. All in all, the tests appear to be a useful diagnostic tool for specifying
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panel QR models.

Table 1: Empirical rejection frequencies for 7, and 7. under a homoskedastic error struc-
ture and no cross-unit error dependence with 7 = 72, =0

Individual-unit estimation Pooled estimation

T N Tos Too Tos Tos Tos Tos Ms  Too Too Tos Tos  Tos Tos Ms

10 10 140 6.6 20.6 114 135 6.5 58 12.0 55 125 54 11.7 58 5.3
20 10 84 5.1 102 71 92 6.0 5.0 83 54 7.7 53 82 53 49
30 10 66 39 85 55 70 48 4.0 6.9 50 74 50 78 5.6 5.2
250 10 70 52 76 58 6.6 50 5.1 6.8 52 69 52 68 50 5.2
100 10 70 6.1 69 6.1 68 6.0 59 6.9 57 65 56 6.7 57 56

10 20 305 74 523190 310 71 76 27.1 5.6 26.7 55 258 6.1 54
20 20 132 52 190 7.7 126 48 44 127 49 128 52 129 49 5.0
30 20 11.2 6.1 124 6.7 106 5.2 53 11.2 53 11.1 51 11.0 5.1 5.0
50 20 92 49 103 6.2 86 48 4.9 92 51 92 49 92 49 438
100 20 6.5 48 72 54 6.6 4.7 48 6.7 45 6.5 47 7.0 46 44

10 30 549 92 826 29.7 540 78 11.3 489 6.1 481 58 482 6.5 6.0
20 30 183 49 283 93 181 48 48 188 45 183 4.8 181 53 4.8
30 30 122 40 168 6.0 11.5 39 3.7 11.0 38 11.2 3.8 11.2 3.6 3.6
50 30 92 47 116 56 93 43 46 96 46 9.8 49 9.7 49 438
100 30 6.8 43 77 44 74 39 42 6.3 40 6.3 40 6.1 3.7 39

10 50 935 129 999 52.7 929 11.9 198 887 6.3 89.1 6.3 89.1 6.5 6.1
20 50 36.6 3.6 56.5 10.7 35.7 3.7 40 344 32 351 32 351 3.2 3.0
30 50 204 40 318 74 209 40 43 206 3.7 208 3.7 21.0 3.7 3.7
50 50 122 34 153 44 114 29 34 120 29 120 2.8 114 2.7 2.7
100 50 78 31 96 35 83 33 3.1 86 29 9.0 31 88 3.0 28

10 100 100.0 23.8 100.0 93.0 100.0 24.2 56.4 100.0 8.8 100.0 7.9 100.0 8.5 8.6
20 100 84.6 3.7 98.1 220 85.7 34 58 8.1 3.5 848 34 850 35 34
30 100 50.6 26 743 88 492 32 38 493 23 494 23 50.0 24 24
50 100 259 24 382 47 248 25 28 256 23 255 22 252 23 23
100 100 122 25 157 33 124 21 27 11.7 2.8 118 28 11.8 28 29

Note: 7; and T, correspond to the test statistics in (3) and (5), respectively com-
puted at quantiles 7 = {0 2,0.5,0. 8} using either individual-unit or pooled fixed-effects

estimation. /\/l3 = (76 o+ Tos + 768) corresponds to the portmanteau statistics in
(7). All results reported are based on the nominal size of 5% and 2000 Monte Carlo
replications.
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Table 2: Empirical rejection frequencies for 7, and 7, under a homoskedastic
error structure and no cross-unit error dependence with v, = 72 = 0.5

Individual-unit estimation Pooled estimation
N T T2 Tox Tos Tos Tos Tos  Toz Too Tos Tos  Tos Tos
10 10 14.1 58 21.3 9.7 128 56 120 46 116 3.6 119 4.1
20 10 87 44 106 52 88 5.3 89 47 86 45 &85 4.3
30 10 71 45 79 43 79 4.5 77 46 75 44 80 4.6
50 10 6.3 45 73 51 66 49 71 53 72 53 74 5.0

100 10 6.7 54 6.8 53 6.5 5.0 6.5 5.1 65 49 68 57

10
20
30
50

20 29.5 5.3 488 124 283 44 251 4.0 245 33 252 4.1
20 133 39 165 49 127 36 13.1 3.1 132 28 127 3.1
20 96 32 119 49 103 4.1 96 40 95 38 99 39
20 83 39 90 41 83 41 7.8 41 76 41 7.6 44

100 20 6.7 39 65 3.8 6.7 4.3 7.1 40 70 40 7.0 43

10
20
30
20

30 56.7 6.5 804 18.6 53.6 58 472 4.0 458 3.3 46.6 4.6
30 20.1 3.5 285 56 198 3.6 198 3.2 19.8 24 20.0 3.0
30 128 28 153 38 123 3.0 124 3.0 120 23 13.0 2.7
30 84 26 95 3.1 93 27 8.8 24 91 21 93 24

100 30 78 36 75 38 76 34 73 33 72 36 75 34

10
20
30
20

20 93.0 88 99.8 38.0 93.8 87 88.6 4.6 880 3.0 881 3.7
20 36.6 2.3 534 52 349 23 359 21 352 1.8 348 2.6
20 198 23 276 26 206 19 215 19 207 14 208 1.7
20 153 2.8 177 27 147 21 141 22 145 20 146 2.3

100 50 92 29 89 28 91 3.0 89 3.0 92 28 9.0 3.1

10
20
30
20

100 100.0 15.7 100.0 78.6 100.0 15.8 100.0 5.2 100.0 2.7 100.0 4.6
100 873 1.8 980 7.2 8.8 1.8 86.1 1.7 8.1 1.2 8.4 1.8
100 526 1.2 69.6 2.2 523 1.1 50.8 0.7 50.3 0.5 508 0.7
100 272 1.1 342 1.2 274 08 274 1.0 270 06 274 1.1

100 100 135 1.3 136 1.1 139 1.0 139 14 134 1.2 135 14

Note: 7, and 7T,, correspond to the test statistics in (3) and (5), respec-
tively computed at quantiles 7 = {0.2,0.5,0.8} using either individual-unit
or pooled fixed-effects estimation. Mg = %(%_2 + ’76.5 + 76,8) corresponds
to the portmanteau statistics in (7). All results reported are based on the
nominal size of 5% and 2000 Monte Carlo replications
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Table 3: Empirical rejection frequencies for 7, and 7, under a homoskedastic
error structure and no cross-unit error dependence with v, = vy, =1

Individual-unit estimation Pooled estimation

N T Toz Too Tos Tos Tos Tos  To2 Too Tos Tos Tos Tos

10 10 141 58 213 97 128 56 120 46 11.6 3.6 119 4.1
20 10 87 44 106 52 88 5.3 8.9 47 86 45 85 43
30 10 71 45 79 43 79 45 77 46 75 44 8.0 46
50 10 6.3 45 73 51 6.6 49 71 53 72 53 74 50
100 10 6.7 54 6.8 53 6.5 5.0 6.5 51 65 49 6.8 5.7

10 10 140 6.7 197 9.0 145 6.0 128 5.0 11.9 41 121 4.5
20 10 89 46 10.1 55 92 55 9.7 48 82 44 87 47
30 10 82 55 75 44 9.0 5.0 85 5.7 81 52 86 5.5
50 10 72 48 72 47 77 5.0 77 53 72 50 7.8 5.3
100 10 76 66 72 59 77 6.3 75 62 72 61 84 72

10 20 31.0 6.2 464 11.2 299 5.7 262 4.7 250 3.8 256 4.6
20 20 142 46 164 4.7 140 42 144 42 135 34 140 4.1
30 20 11.8 47 11.2 46 115 47 108 4.8 10.2 4.0 11.0 438
50 20 105 58 89 46 96 49 102 56 9.0 46 10.1 5.1
100 20 100 59 86 49 98 57 100 6.6 9.2 57 103 6.3

10 30 56.2 7.5 76.5 159 548 7.0 491 49 471 3.5 475 5.0
20 30 21,5 3.6 250 46 224 37 211 39 204 31 21.0 3.6
30 30 149 36 143 34 138 39 152 41 139 39 144 42
50 30 121 3.7 106 3.5 11.5 3.7 11.5 45 106 3.6 122 4.3
100 30 116 6.1 95 45 122 6.9 120 6.1 11.3 5.7 122 6.5

10 50 93.4 10.8 99.4 30.7 934 9.7 8.7 55 835 3.1 884 4.7
20 50 41.0 3.2 484 3.6 39.6 3.2 385 34 377 25 379 3.6
30 50 25.3 3.5 245 23 257 28 263 25 251 20 253 27
50 50 219 48 16.7 2.6 20.0 3.8 201 46 201 3.7 21.1 4.6
100 50 2056 74 136 47 206 79 202 69 189 6.7 20.0 8.0

10 100 100.0 19.2 100.0 68.0 100.0 19.8 100.0 8.0 100.0 3.9 100.0 6.8
20 100 903 3.6 96.1 4.7 898 39 8.6 3.5 8.2 19 879 34
30 100 635 3.0 648 12 61.7 29 635 25 619 1.5 619 2.0
50 100 451 3.7 356 1.0 451 3.7 445 4.0 449 28 453 3.5
100 100  41.7 11.2 269 4.6 41.0 10.7 41.7 10.8 40.5 9.5 40.8 10.0

Note: 7, and 7;, correspond to the test statistics in (3) and (5), respectively
computed at quantiles 7 = {0.2,0.5, 0.8} using either individual-unit or pooled
fixed-effects estimation. M:g = %(77),2 + 7~6_5 + '76.8) corresponds to the port-
manteau statistics in (7). All results reported are based on the nominal size
of 5% and 2000 Monte Carlo replications
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Table 4: Empirical rejection frequencies for 7, and 7, under a heteroskedastic error structure and
no cross-unit error dependence

Individual-unit estimation Pooled estimation

T N  Tos Toz Tos Tos Tos Tos Ms  Too Too Tos Tos Tos Tos Ms

10 10 204 122 247 144 213 11.6 95 274 17.0 240 139 270 16.6 14.2
20 10 238 172 23.1 16.8 248 175 147 30.1 225 264 195 314 242 21.1
30 10 274 222 236 187 257 205 188 31.5 260 264 21.2 31.0 26.2 235
50 10 304 26.6 246 212 29.8 26.2 227 338 298 263 224 33.7 296 273
100 10 404 38.2 27.7 2477 408 38.1 33.3 429 40.2 282 259 427 399 354

10 20 50.1 21.5 60.7 289 516 213 19.6 632 332 60.0 274 636 319 30.6
20 20 48.6 31.8 48.8 30.8 478 31.7 30.8 588 434 545 37.6 614 452 424
30 20 56.1 44.1 498 36.6 534 405 414 65.6 529 551 429 62.0 51.5 49.7
50 20 654 58.0 56.6 46.9 66.3 57.8 55.8 72.0 63.1 60.0 51.5 721 64.8 61.5
100 20  80.6 76.1 60.2 54.7 782 743 724 8.0 774 61.9 569 812 Tr.1 T4.2

10 30 771 31.8 87.8 424 779 309 328 87.7 476 853 422 875 46.0 456
20 30 724 489 71.3 479 728 49.0 49.1 819 633 778 548 814 632 614
30 30 799 656 76.0 58.9 795 65.1 65.7 8.6 73.9 808 66.3 853 745 73.0
50 30 88.0 79.9 799 68.7 877 803 79.5 904 84.7 838 745 90.4 849 83.7
100 30  95.0 93.0 844 783 957 933 927 958 93.8 86.0 80.9 96.8 94.2 93.4

10 50 99.1 524 999 694 99.1 522 605 995 689 99.6 653 994 69.3 69.1
20 50 946 738 96.3 73.6 949 73.0 765 97.8 85.6 973 81.3 97.6 85.0 85.3
30 50 96.6 87.2 959 84.6 969 &87.6 8.7 982 923 97.7 §7.8 983 92.7 922
50 50  99.1 96.6 98.1 92.6 99.0 964 97.0 99.5 98.0 98.6 94.8 99.5 979 97.9
100 50 100.0 99.9 99.0 97.0 99.9 99.6 99.8 100.0 100.0 99.1 979 99.8 99.7 99.8

10 100 100.0 84.4 100.0 97.7 100.0 84.6 93.8 100.0 91.2 100.0 90.1 100.0 91.2 91.8
20 100 100.0 959 100.0 97.3 99.9 95.6 97.1 100.0 98.7 100.0 97.7 100.0 98.3 98.3
30 100 100.0 99.1 100.0 99.0 100.0 99.2 99.0 100.0 99.5 100.0 99.2 100.0 99.5 99.4
50 100 100.0 99.9 100.0 99.9 100.0 99.8 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0
100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: 7, and 7., correspond to the test statistics in (3) and (5), respectively computed at

quantiles 7 = {0.2,0.5,0.8} using either individual-unit or pooled fixed-effects estimation. Mg =
%(76,2 + To5 + Tos) corresponds to the portmanteau statistics in (7). All results reported are
based on the nominal size of 5% and 2000 Monte Carlo replications.
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5 A panel QR analysis of housing market growth

Homes are one of the most important assets in many households’ portfolios (Englund
et al., 2002) and, consequently, changes in housing wealth may lead to changes in home-
owners’ consumption (Case et al., 2005). E.g., it has been shown that the impact of
changes in housing wealth on the economy can be more important than changes in wealth
caused by stock price movements (Helbling and Terrones, 2003, and Rapach and Strauss,
2006). Economic history indeed suggests that some of the most severe systemic financial
crises have been associated with boom-bust cycles in real estate markets (see e.g. Bordo

and Jeanne, 2002, and Crowe et al., 2013).

In this context, Deghi et al. (2020) propose the so-called houses-prices-at-risk approach as
a measure to evaluate risks to the real estate market. This measure is inspired in the work
of Adrian et al. (2022) (see also Adrian et al., 2019) who developed a measure to evaluate
risks to GDP growth (Growth-at-Risk); see Brownlees and Souza (2021) and Nandi (2022)
for panel approaches to Growth-at-Risk. In a similar vein, Makabe and Norimasa (2022)
analyse the term structure of Inflation-at-Risk. Such approaches estimate a (panel) QR
to determine which of the covariates considered affect the response variable of interest,
i.e. house price growth (for houses-prices-at-risk), inflation (for inflation-at-risk), or GDP
growth (for growth-at-risk) and to explain the conditional predictive distribution of the
response variable derived from the estimates. Moreover, the entire conditional distribution
of the variable of interest is computed following two steps: (1) panel QR estimation of the
effect of the covariates at each quantile, and (2) approximation of the estimated quantile
function e.g. with a skewed t-distribution. Consequently, the correct estimation in the
first step is of tantamount importance in this approach. In this section, we illustrate the
relevance of our procedure with an application of panel QR to house price growth data

for eleven countries.
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5.1 Data

In our analysis we consider a balanced panel of quarterly time series, for the period from
1995:Q1 to 2020:Q3 (T' = 103), for nine Euro Area countries (Germany (DE), France
(FR), Ttaly (IT), Spain (ES), the Netherlands (NL), Ireland (IE), Portugal (PT), Belgium
(BE) and Finland (FI)), the UK and the US (N = 11). Data on house prices, disposable
income, labour force and private consumption deflator were collected from the OECD,
while short-term interest rates were taken from the European Central Bank. A detailed
description of all data sources and availability, as well as country specificities are provided

in Appendix C.

House price indices correspond generally to seasonally unadjusted series constructed from
national data from a variety of public and/or private sources (e.g., national statistical
services, mortgage lenders and real estate agents). National house price series may differ
in terms of dwelling types and geographical coverage (most are country-wide and refer to
existing apartments). Several series are based on hedonic approaches to price measure-
ment, characterized by valuing the houses in terms of their attributes (average square
meter price, size of the dwellings involved in transactions and their location).

8
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Figure 1: Quarterly change in log real house prices (in percentage) for 11 quarterly real
house price series
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In our analysis we consider fluctuations in real house prices,® measured as quarterly
changes in the natural logarithm of the real house price index of each country, i.e., quar-
terly real house price growth. Figure 1 plots the cross-sectional 10th-90th percentile range,
the 25th-75th percentile range and the median of the 11 quarterly real house price growth

at each time in the sample.

This figure illustrates that, although some countries appear to be more cyclical than
others, real house prices tend to co-move during crises, which suggests the presence of
an underlying common factor in these series. We see a general decline during the global
financial crisis (2008-2009) as well as during the European sovereign debt crisis (2011-
2012).

5.2 Model

There is a vast number of studies that analyses the determinants of house prices and
their growth. Findings in the literature indicate that models that explain changes in
house prices include a wide set of fundamentals, such as income (or GDP), population,
employment or unemployment rate, taxes, borrowing costs, construction costs and returns

on alternative assets (Poterba et al., 1991, Englund and Ioannides, 1997, Tsatsaronis and

Zhu, 2004).

In our analysis, the dependent variable is the growth rate of real house prices, Arhp. To
keep the model tractable, and due to data availability, we focus on the most consensual
fundamentals, such as, log of real disposable income, lrdi, real mortgage interest rate,
rmtgr, log of gross fixed capital formation, (G FCF', the unemployment rate, unemp, and

the volume of loans for house purchases, vlhp.

We take a predictive perspective here, and the panel QR model is given as

Arhpiy = i+ P Alrdi 1 + BoAIGFCF; 4 + B3 Avlhp; i

+ B runempiy—1 + Bs prmitgrig—y + X fy -+ Wi, (9)

4All series in real terms are computed using the private consumption deflator.
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where 7 € (0,1) is the quantile of interest, i = 1,...,11 indexes the eleven countries

considered, and A is the first difference operator.

The quantile factor methodology recently proposed by Chen et al. (2021), which we use to

estimate a panel QR model with factors in (9), allows for quantile-dependent factors, Jir

Our tests should detect such forms of cross-sectional dependence as well. The number of

factors considered at each quantile is determined using the rank-minimization approach

proposed by Chen et al..

Table 5: Panel QR results from models with and without quantile factors (QRr and Q Ry,

respectively)
QRo QRF QRo QRF QRo QRF

7=0.1 T=0.2 T=03
Bz 0.2293** 0.1554*** 0.1136*** 0.0638"** 0.1174%* 0.0695***
B, 0.1072%* 0.0543*** 0.1220*** 0.0816™** 0.1175% 0.0759***
B3,r 0.2260*** 0.1305*** 0.2205*** 0.0896*** 0.1909*** 0.1007***
Bar —0.1258"*** —0.0555"** —0.0807*** —0.0749** —0.0537*** —0.0428***
Bs.r —0.1597*** —0.0733*** —0.1295*** —0.0486** —0.0922*** —0.0683***
fir —0.0037* —0.0038** 0.0017
for 0.0091%**

T=04 T=0.5 T=0.06
B, 0.1131*** 0.0648*** 0.0669** 0.0441 0.0469 0.0498*
Bar 0.0968*** 0.0756*** 0.1017*** 0.0694*** 0.0817*** 0.0586***
B3+ 0.1955*** 0.0827*** 0.1904*** 0.0838*** 0.1652*** 0.0495**
Bir —0.0439* —0.0474*** —0.0363** —0.0331** —0.0246* 0.0137
Bs.r —0.0718** —0.1081%** —0.0607*** —0.09747** —0.0638*** —0.0900***
fir 0.0059*** 0.0072** 0.0088***
for —0.0123*** —0.0114*** 0.0116™**
far —0.0056*** —0.0046** 0.0034*
far 0.0143** 0.0138*** 0.0113***
I5r 0.0107*** 0.0114***

T=0.7 7=0.8 7=09
B, 0.0472 0.0454* 0.0416 0.0479 0.0494 0.0379
Bar 0.0693*** 0.0552*** 0.0527*** 0.0465*** 0.0268 0.0531***
Bs.+ 0.1471*** 0.0560*** 0.1485*** 0.0351* 0.1438*** 0.0032
B —0.0356** 0.0088 —0.0170 —0.0053 0.0119 —0.0179
Bs.r —0.0692*** —0.1153*** —0.0472** —0.0902*** —0.0366 0.0066
fir 0.0094*** —0.00727** 0.0058***
for 0.0107**

Note: Quantile regression estimation results of (9) with (QRr) and without (QRp) the inclusion of

factors. The factors used where extracted using the approach of Chen et al. (2021).

Table 5 provides the estimation results of the panel QR model in (9) with (QRr) and

without (QRy) the inclusion of factors.

The signs of the parameter estimates in Table 5 are in general as expected. Specifically,
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positive variations in the log of real disposable income, Irdi (5 ,), the log of gross fixed
capital formation, [GFCF (fs..) and the volume of loans for house purchases, vlhp (S5 ;)
have positive impacts on house price growth whereas positive variations in the unemploy-
ment rate, unemp (f4,,), and the real mortgage interest rate, rmtgr (fs,.), have negative
impacts on house price growth. Moreover, we also observe that the association between
the covariates and house price growth varies at the different parts of the house price
growth distribution. Overall, the differences in slopes indicate a markedly stronger rela-
tionship towards the left tail of the future house prices growth distribution relatively to

the median and the upper percentiles of the distribution.

Importantly, the QQ Rr estimation results highlight the relevance of the quantile factors
used in the panel QR model. This Table shows that the factors are in general all sta-
tistically significant regardless of the quantile 7 considered. Furthermore, if we contrast
the slope parameter estimates obtained from QQRy and QQRr we observe that the slope

estimates are in general different.’

To formally support the choice of the Q) Rp results, Table 6 provides the outcomes of the

QR cross-sectional dependence tests introduced here at quantiles 7 € {0.1,0.2,...,0.9}.

In addition to the results in Table 6 we have also computed the classical Breuch-Pagan
test, BP = 31.144, and the bias-corrected version proposed by Baltagi et al. (2012),

BPF,. = 31.089.

The results in Table 6 indicate that:

1. there is not a significant difference between the asymptotic and the corrected versions

of the panel QR cross-sectional dependence tests;

2. the strength of the cross-correlation depends to some extent on the quantile of

interest. The BP and the BPB,. tests do not provide quantile specific information.

This is also observed by Nandi (2022) when explicitly accounting for cross-unit dependence in the

panel QR analysis of Brownlees and Souza (2021).
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3. there are visible differences between the tests based on pooled estimation (7, and
7;) and those based on individual-unit estimation (ﬁ(i) and 7~’T(i)), where the latter
indicates stronger cross-correlation. This points towards heterogeneity of the slope

parameters in addition to cross-unit error dependence.

Table 6: Cross-sectional dependence test results

A
0.100 16.244 16.151 25.583 25.489
0.200 17.613 17.515 25.853 25.754
0.300 15.369 15.269 27.721 27.622
0.400 17.419 17.316 28.122 28.019
0.500 19.539 19.441 28.899 28.801
0.600 19.341 19.243 33.287 33.188
0.700 21.424 21.326 35.864 35.766
0.800 20.687 20.592 37.298 37.202
0.900 30.436 30.337 41.305 41.207

Note: Tj, and Ty, are the test statistics provided in (3) and (5), respectively; and ’7;@) and 7~7€(i)
are also computed as indicated in (3) and (5), respectively, but the residuals used are obtained
from individual regressions.

Hence, overall Table 6 points to the presence of cross-sectional dependence which suggests

that this feature needs to be addressed in the panel QR estimation and hence, supports

the results obtained from the factor augmented panel QR model in (9).

Since Table 6 is suggestive of slope coeflicient heterogeneity, we provide individual-estimation
results in Appendix C (Table C2) and we also present plots of the country specific quantile
predictions (Figure C1). Interestingly, during the COVID 19 pandemic the development
of the housing market has been atypical. This is, to a certain extend, well illustrated in
Figure C1. Specifically, we note that at the end of the sample, for many of the countries
considered, the covariates point to an evolution of house price growth which is in contrast
to the actual observed house price growth dynamics. In past recessions, downturns were
typically followed by a moderate fall in nominal house prices, lasting about four quarters.
However, in the pandemic period until the end of 2021, there was no decline at all. In
addition, the current recession has not been accompanied by significant changes in credit
growth, unlike past episodes, when households typically reduced their leverage after it

had increased in the expansion phase (Igan et al., 2022).
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In recent years, the international synchronization of house prices has increased. As noted
by Igan et al. (2022), more than 60% of house price movements can now be explained
by a common global factor. One reason for this much higher synchronization is that the
pandemic has been truly global, thus inducing similar policy reactions and flattening yield

curves worldwide.

6 Concluding remarks

This paper has argued that cross-sectional dependence in panel QR models may have
a biasing effect on the QR estimator even if the latent error common components are
independent of the regressors. This extends more generally to panel nonlinear GMM

estimators with errors having a factor structure.

Motivated by this argument, we proposed a test for no cross-sectional dependence. Such
tests may also be interpreted as misspecification tests, since the detection of cross-sectional

dependence may imply the existence of potential estimation biases.

The proposed test is a version of the familiar Breusch-Pagan test based on residuals from
either pooled or individual-unit QR estimation. While it possesses a standard normal
limiting distribution under joint N,T asymptotics, the rate restrictions are not benign,
which is reflected in the finite-sample behavior. For this reason we discuss a finite-sample
correction which largely removes the size distortions when NV is too large in relation to 7.
We also discuss a portmanteau version of the tests which aggregates evidence across several
quantiles. Moreover, we provide an in-depth Monte Carlo analysis of the finite sample
size and power properties of the new procedures introduced, confirming the usefulness
of the finite-sample correction and revealing interesting power performance under the

alternative.

Finally, we illustrate the usefulness of our approach in an empirical analysis of house-price
growth determinants, from a predictive perspective, in a panel of eleven countries (Ger-
many (DE), France (FR), Italy (IT), Spain (ES), the Netherlands (NL), Ireland (IE),
Portugal (PT), Belgium (BE) and Finland (FI), the UK and the US), for the period
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from 1995:Q1 to 2020:Q3. The tests introduced clearly highlight the need to address
cross-sectional dependence, favoring therefore a factor augmented panel QR model. Fur-
thermore, evidence of cross-dependence is stronger in pooled residuals than in residuals
from individual-unit estimation, indicating the presence of slope coefficient heterogeneity

in addition to cross-unit dependence in the data.
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Appendix A - Auxiliary results

Throughout the appendix, let w;, u; » and X; stack ;s ,, @+, and wg’t fort=1,...,T, and
denote by &;; the sample covariance of the residuals, 0;; = % (ai’f — ﬁmb)/ (ﬁw — ﬁjﬁb)
with ¢ a T-vector of ones, and by a; (AZ) the column-specific demeaning of a vector

(matrix).

Lemma 1 Under the weaker assumptions of Proposition 2
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where Q1 through Q19 are computed using either a pooled slope coefficient estimator or individual-unit

estimators.

Lemma 2 Under the weaker assumptions of Proposition 2, let ar = ay = i. Then,

1 81= s S S (ot G R F) = oy(1);
2 5= AT S (et B, ) = a0);

5. S = = Lili Xiten (7t Fe ’)2 — 0,(1);
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6. \/7 E Z] =i+l al\/@ €€j mf; TF/€; = 0p(1);
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Appendix B - Proofs of main results

Proof of Lemma 1
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Under the null of no cross-sectional dependence and with Assumptions 3 and 5, we note that Ryt does

not play any role asymptotically in either summand, so, with a mild abuse of procedure, we set it to 0

and obtain
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we have, thanks to independence of {u;}, that
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which is O (T2), and therefore Qy = 0, (27" ).
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for some constant C. Hence Qs = O, (
Q9 behaves similarly to Qs.

Now we may analyse Q1¢.
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C which in turn implies that Sy = O, (]%71;//22) = 0p(1).

S3 is dealt with in a manner similar to Ss.
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where the rest terms Qg, k = 1,...,10, are shown in Lemma 1 to be o, (V) under the weaker conditions

of individual-unit estimation. Therefore
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restrictions, so the result follows if the second and third terms on the r.h.s. vanish. We examine the

vanishing terms in turn.
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where the individual variances on the r.h.s. are in turn O (T’l). Therefore, Chebyshev’s inequality

ultimately leads to
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so, thanks to Markov’s inequality,
_ =\2 /= \2
R i Tofo} (&) (&) _ (N) o.(1)
2 2 =Yp\ 7 ) =9
N(N —-1) o S o;0; T

under our rate conditions.
Importantly, the expectation of this term is given by %7 which justifies the first component of

the finite-sample correction proposed in (5). The second component of the correction is obtained from

Lemma 1, stemming from the leading term of Q1 + Q.

To conclude, we have

1 005 . de

/ / i / 1=t
77 (wi — o) (wj — epy) = N N1/2£’ o W%F«’% 7+ W@ F'E;

Upon squaring the r.h.s., Lemma 2 then indicates that

1 Nz—l N (% (w; — ) (uj — l/,uj)) -
N(N-1) = j=i+1 012%2
N-1 N 2 N-1 N 2
1 ( 1, ) ) 1 ( 1,
= Z €;€j -1+ Z 1/2 %, e]; + Op(l)
N(N - 1) i=1 j=i+1 < T N(N - 1) =1 j=1+1 TN /

leading to the desired result.

Proof of Proposition 2

We closely follow the proof of Proposition 1 and obtain similarly

. 1,0\ (1,
oy = (T’Uaiuj> + (T (/B‘r,i - Bni) Xiuj)
+ (TulX (ﬁTj - ,BT,J'))Q + (;1 (Br,i - 5771')/ XX, (Br,j - ﬁm’))

e (2 " 2 . (= "oro (2
Ui (Bm - 57,1) Xty — Tz“ it X (571' _ﬁm') + ﬁ“;”‘j (5771? _ﬁﬂi) XX, (574 _Bﬂj)

2

2
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+% (B” - ﬁTL)leLu]u’ILX] (Bm‘ - ﬁT,j) - % (Bﬂ - ﬁT,i)lxgﬂj (Br,i - 57,1)/X;Xj (BT,j - 57,3‘)

2R (B, B.,) (B~ 8,.) XX (B, - 8.,)

1 2 9 ~
= <Tu;u]> + Z Ak,ija
k=1

and also )
N-1 N ~2 N-1 N 1rse 10
05 T (T“i“j) ~
> r(5h-1)-X > (T4 1) Sa
i=1 j=i+1 i i=1 j=i+1 7] k=1
where Q1,...,Q1o are defined analogously to the terms in the proof of Proposition 1 but are computed

using BLT rather than a pooled slope coefficient estimator. Thanks to Lemma 1, we obtain that

T = NN = 1) _ Zl ( 0_30_2 - 1> —|—Op(1)

under our rate conditions. The result follows using the same arguments as in the proof of Proposition 1.

Proof of Proposition 3

We focus w.l.o.g. on the case of individual-unit estimation. Then, like in the proof of Proposition 2, we

have )
N—-1 N 1 et e
~ 1 T(fu»u-)
T = E AN i A VAN | + 0,(1),
% N(N —-1) o Pl < Ufiafj

where the disturbances wu; ¢, = 0;€;+ are the same for all 7, and therefore

- 1 K 1 N-1 N T(%il'-iljf
- N ™" T e S\rhi%) 1
Mg N ;Tk NN =D & —2:1 =pe) +0,(1)
- =1 j=1

for any finite K; the result follows.

Appendix C - Data sources, and additional empirical

results and figures
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Table C2: Country specific QR estimation results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DE «a;, 0.018™* 0.017*** 0.025*** 0.024** 0.021*** 0.019™* 0.022** 0.019*** 0.014***
Buir —0.227* —0.150" —0.198"* —0.281** —0.221" —0.199"* —0.238"** —0.375"* —0.219
Bair 0.025 0.018 —0.002 —0.021 —0.024 —0.003 0.006 0.045* —0.080***
Bsir 0.180 0.146 0.118* 0.046 0.052 0.027 —0.022 0.122* 0.187**
Buir —0.373* —0.310* —0.383™~ —0.299" —0.214"* —0.156™" —0.185"* —0.015 0.228"*
Bsir 0.031 —0.018 —0.004 —0.048 —0.120"* —0.151"* —0.123** —0.274" —0.534"
FR a;, —0.017 —0.002 —0.012 0.017 0.035" 0.029* 0.029™ 0.043™** 0.045
Brir 0.861"* 0.928™* 0.818"** 0.405* 0.270 0.280 0.193 —0.111 —0.170
Bair 0.166™* 0.146™* 0.082** 0.093** 0.143* —0.001 —0.026 —0.018 0.018
Bsir 0.028 0.165* 0.339*** 0.397** 0.302* 0.383* 0.487 0.545*** 0.451
Buir 0.159 —0.027 0.043 —0.226* —0.368" —0.292* —0.272** —0.405™* —0.339
Bsir —0.351* —0.205*** 0.020 0.072 0.060 0.096 0.109* 0.178* 0.104
IT o, 0.000 0.005 0.013*** 0.012** 0.014*** 0.014** 0.017** 0.011** 0.021**
Brir 0.403*** 0.216 0.347** 0.337** 0.243™* 0.199™* 0.097 —0.009 —0.006
Bair 0.080™* 0.020 —0.002 0.007 0.029 0.042* 0.048 —0.003 —0.002
Bsir 0.288™* 0.317 0.307*** 0.350"** 0.342" 0.347* 0.381™* 0.349** 0.186™**
Buir —0.099 —0.101* —0.156"** —0.133** —0.150*** —0.130*** —0.156"** —0.062 —0.085""
Bsir —0.224" —0.286*** —0.317 —0.283" —0.197* —0.229"* —0.159"* —0.093 —0.170"*
ES i, —0.005 0.015 0.013 0.011 0.009 0.010* 0.023*** 0.026™** 0.040***
Brir 0.215 0.505™* 0.550™** 0.183 0.060 —0.011 —0.189** —0.186 —0.053
Bair 0.178™* 0.172* 0.213"* 0.1717* 0.165™* 0.154™* 0.132™* 0.145"* 0.100™**
Bsir 0.357 0.042 0.058 0.198™** 0.255™* 0.280™* 0.199™* 0.259*** 0.223™*
Buir —0.075 —0.153* —0.092 —0.040 0.001 0.012 —0.040 —0.060 —0.126"*~
Bsir —0.306"* —0.097 —0.172 —0.217** —0.229 —0.277 —0.220" —0.084 0.025
NL a5, 0.003 0.003 0.007 0.008 0.005 0.014*** 0.017*** 0.023** 0.030***
Brir 0.142 0.139 0.143* 0.124 0.089 —0.001 —0.061 —0.137** —0.048
Bair 0.153* 0.108™* 0.103*** 0.082** 0.049" 0.067* 0.080™* 0.033 0.010
Bsir 0.095 0.213™* 0.252*** 0.240 0.296™* 0.288™* 0.346™* 0.470"* 0.382"**
Buir —0.117 —0.036 —0.034 —0.022 0.076 —0.019 —0.030 —0.080 —0.165
Bsivr —0.258 —0.224** —0.325"* -0.239 —0.176" —0.183* —0.203** —0.231% —0.146*
IE o, 0.016* 0.016* 0.007 0.011 0.011* 0.019*** 0.030"** 0.025** 0.020*
Brir 0.055 0.004 —0.020 0.039 0.075 0.043 0.005 0.013 0.017
Bair 0.114** 0.136™** 0.174*** 0.174** 0.126™* 0.117** 0.071* 0.061** 0.061
Bsir 0.137 0.157* 0.120 0.067 0.142 0.142 0.113 0.158* 0.245*
Buir —0.281" —0.250"" —0.032 —0.054 0.053 —0.005 —0.003 0.104 0.421"*
Bsivr —0.595"** —0.427 —0.223** —0.127 —0.257** —0.196 —0.288"" —0.363™* —0.662"**
PT a;, —0.009** —0.004 0.003 0.005 0.005 0.006 0.011* 0.016** 0.029***
Brir 0.357*** 0.341** 0.248"* 0.082 0.198 0.181 0.394** 0.230 0.463*
Bair 0.001 0.040 0.046 0.096** 0.137* 0.100*** 0.064 0.114* —0.014
Bsir 0.079* 0.032 —0.009 —0.025 —0.021 0.069 —0.003 —0.014 —0.068
Buir —0.062 —0.066 —0.106"* —0.063 —0.023 0.008 —0.010 —0.013 —0.018
Bsi,r —0.006 0.014 0.010 —0.019 —0.050 —0.124* —0.138* —0.139 —0.289***
BE a5, 0.004 0.000 —0.007 —0.014* —0.007 —0.005 —0.003 0.007 0.010
Brir —0.098 —0.077 —0.002 —0.035 0.001 0.110 0.100 0.185 0.039
Boir —0.036 —0.006 0.049 0.033 0.029 0.018 0.036 0.029 0.053
Bsir —0.017 0.000 0.008 0.025 0.042 0.058" 0.059™ 0.086™** 0.021
Buir —0.071 —0.003 0.137 0.251** 0.153 0.143 0.147 0.051 0.129
Bsir —0.145** —0.046 —0.100* —0.051 0.101 0.123* 0.086 0.093 —0.020
FI o, —0.040*** —0.023** —0.028"** —0.029"* —0.028* —0.028"* —0.029"* —0.037** —0.041***
Brir 0.102 0.003 —0.084** —0.068 —0.020 0.052 0.063 0.076 0.030
Boir 0.061* 0.056™ 0.040" 0.034 0.012 —0.024 —0.041 —0.048* —0.042
Bsir 0.320™* 0.250™* 0.324** 0.377* 0.185" 0.312"* 0.280™* 0.381"** 0.447*
Buir 0.387* 0.217 0.294*** 0.312"* 0.328"™* 0.351™* 0.392™* 0.506™** 0.623™*
Bsi,r —0.361*** —0.136 —0.112 —0.135 0.057 0.078 0.069 0.002 —0.177
UK a5, —0.002 0.001 0.004 —0.003 —0.005 0.000 —0.009 —0.012** 0.000
Brir —0.152 0.122 0.004 —0.216 —0.111 —0.056 —0.029 0.068 0.003
Boir 0.114** 0.149** 0.101*** 0.058** 0.058"* 0.014 0.002 0.004 —0.003
Bsir 0.393 0.290" 0.295"** 0.470™* 0.491™* 0.454™* 0.569™* 0.600"** 0.643™*
Buir —0.166 —0.114 —0.126 0.032 0.102 0.056 0.254™* 0.319"** 0.156"
Bsi,r 0.038 0.034 0.136** 0.203*** 0.230™* 0.304™* 0.342™ 0.352"** 0.484**
US i, 0.017** 0.018"* 0.015** 0.014* 0.014** 0.017** 0.016"** 0.017* 0.020**
Brir —0.274* —0.197** 0.065 0.108** 0.095 0.184*** 0.193*** 0.166*** 0.032
Boir 0.324** 0.269*** 0.232** 0.162*** 0.159™* 0.113*** 0.077*** 0.046™** 0.011
Bsir 0.441"* 0.297*** 0.248"** 0.207** 0.282"** 0.272"* 0.271** 0.312** 0.201***
Buir —0.376"* —0.243" —0.195"** —0.126"*~ —0.084"* —0.081** —0.038 —0.006 0.041
Bsir —0.129"** —0.154" —0.122** —0.107* —0.148" —0.184" —0.187*** —0.207* —0.197*
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Figure C1: Quarterly change in log real house prices, conditional median and conditional
10th and 90th percentiles.





