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Can the Replication Rate Tell Us About Selective Publication?

By Patrick Vu∗

Selective publication is among the most-cited reasons for widespread replica-

tion failures. I show in a simple model of the publication process that the

replication rate is completely unresponsive to the suppression of insignificant

results. I then show that the expected replication rate falls below its intended

target owing to issues with common power calculations in replication studies,

even in the absence of other factors such as p-hacking or heterogeneous treat-

ment effects. I estimate an empirical model to evaluate if issues with power

calculations alone are sufficient to explain the low replication rates observed

in large-scale replication studies. The model produces replication rate pre-

dictions (using only data from original studies) that are almost identical to

observed replication rates in experimental economics and social science. In

psychology, the model explains two-thirds of the gap between the replication

rate and its intended target. I conclude by discussing alternative measures of

replication that are more responsive to selective publication.

In a 2016 survey conducted by Nature, 90% of researchers across various fields agreed that

the scientific community faces a ‘reproducibility crisis’ (Baker, 2016). Growing consensus has

been supported by evidence of widespread replication failures. In a replication of 18 exper-

imental economics studies, 61% of significant results were replicated with the same sign and

significance (Camerer et al., 2016). In psychology, only 36% of significant results were success-

fully replicated (Open Science Collaboration, 2015).

Explaining the source of low replication rates has become a topic of intense interest. The

most frequently cited reason is selective reporting, with over 90% of researchers identifying it as

contributing factor to irreproducible research (Baker, 2016). Its most salient form is censoring

statistically insignificant results, either by journals in the editorial process or by researchers

who do not write up null findings in anticipation of low chances of publication (Open Science

Collaboration, 2015; Maxwell et al., 2015; Camerer et al., 2016; Anderson and Maxwell, 2017;

∗This version: October 14, 2022. Brown University. patrick vu@brown.edu. I am especially grateful for the
feedback, advice, and encouragement of Jonathan Roth. For helpful comments, suggestions and conversations,
I thank Johannes Abeler, Daniel Björkegren, Pedro Dal Bó, Anna Dreber, Peter Hull, Toru Kitagawa, Soonwoo
Kwon, and Jesse Shapiro, as well as seminar participants at Brown University.
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Camerer et al., 2018; Stanley et al., 2018; Andrews and Kasy, 2019). Contrary to common per-

ceptions, my first main theoretical result shows, using a simple model of selective publication,

that the replication rate does not depend on the extent to which null results are or are not

published. While this result is somewhat counter-intuitive ex-ante, its explanation is simple.

The replication rate is typically defined as the share of significant results that are replicated

with significance and the same sign. Since the replication rate definition does not depend on

insignificant results, it is unaffected by their prevalence in the published literature. It is impor-

tant to note that this result does not depend on whether or not insignificant findings are chosen

for replication; even when they are, the replication rate calculation does not include them (e.g.

Open Science Collaboration (2015)). Moreover, large-scale replication studies implementing

high-powered designs to detect some fraction of the original effect size are subject to the same

problem (e.g. Camerer et al. (2018)). The replication rate is thus ill-suited to uncovering the

most salient form of selective publication.

If selective publication is unlikely to explain low replication rates, then what does? The

literature offers numerous explanations. Prominent theories include researcher p-hacking in

response to selective publication, for example by specification searching to obtain statistically

significant findings (Ioannidis, 2005, 2008; Simonsohn et al., 2014; Brodeur et al., 2016, 2020,

2022); heterogeneity across original studies and replications in research design and experimental

subjects (Higgins and Thompson, 2002; Cesario, 2014; Simons, 2014; Stanley et al., 2018; Bryan

et al., 2019); and measurement error in small samples (Gelman and Carlin, 2014; Loken and

Gelman, 2017; Gelman, 2018). My second main theoretical result shows that the replication

rate would be expected to fall short of its intended target even in ‘ideal’ conditions where

none of these issues are present. This is because of three issues with the common approach

of setting replication power to detect original effect sizes with a pre-specified intended power

target (typically around 90%). First, original estimates included in the replication rate are not

a random sample of published findings, but instead a selected sample of significant findings.

It is well known that samples selected on extreme characteristics (e.g. height, test scores,

statistical significance) will regress to the mean in repeated samples (Galton, 1886; Hotelling,

1933; Barnett et al., 2004; Kahneman, 2011). In replication settings, this means that significant

original estimates used to calculate the replication rate are mechanically inflated in expectation,

and that replication estimates will regress to the mean. Power calculations in replications

calibrated to detect inflated original estimates may therefore be underpowered for recovering

smaller true effects, leading to low replication rates. Again, whether or not insignificant findings

are chosen for replication has no bearing on this conclusion. A second issue is that common

power calculations lead to very low replication probabilities when original estimates are the

opposite sign of the true effect, which occurs with positive probability due to random sampling
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variation. This is because a ‘successful’ replication in this case relies on the highly unlikely

outcome that a replication reproduces a statistically significant result with the ‘wrong’ sign.

Finally, and most importantly, common power calculations do not account for the non-linearity

of the power function. I show that this non-linearity implies that the expected replication

rate falls below its intended target even in the optimistic scenario where original estimates

are completely unbiased for true effects, all findings are published irrespective of significance,

replications are a random sample of the published literature, and original studies are highly

powered. Overall, these three issues suggest that intended replication rate targets in large-scale

replication studies do not provide a meaningful benchmark against which to judge replication

rates observed in practice; low replication rates are what we should expect.

To what extent can issues with power calculations alone explain the low replication rates

actually observed in large-scale replication studies? To answer this question, I estimate a

model of selective publication based on Andrews and Kasy (2019) to produce replication rate

predictions for large-scale replication studies in experimental economics (Camerer et al., 2016),

psychology (Open Science Collaboration, 2015) and experimental social science (Camerer et al.,

2018). Estimation only uses data from original studies, and predictions are based on the power

calculations that were actually implemented in replications. The model does not incorporate

researcher manipulation, heterogeneous treatment effects, or measurement error. The empirical

exercise asks, in effect, whether observed replication rates could have been predicted by issues

with common power calculations alone, before the replication studies themselves were actually

undertaken.

The predicted replication rate is almost identical to observed replication rates in experimen-

tal economics (60% vs. 61%) and experimental social science (55% vs. 57%).1 This suggests

that low power in original studies in conjunction with replication power issues is sufficient

to explain observed replication rates in these fields. This is consistent with evidence of a low

propensity of p-hacking in experimental settings, perhaps because of fewer researcher degrees of

freedom compared to observational studies (Brodeur et al., 2016, 2020; Imai et al., 2020). Addi-

tionally, these results provide further evidence in support of recommendations to focus greater

attention on statistical power for improving the credibility of published research (Ioannidis,

2005; Gelman and Carlin, 2014; Anderson and Maxwell, 2017; Camerer et al., 2019; DellaVigna

et al., 2019). In psychology, the model predicts a replication rate of 55%. This is well below

mean intended power of 92%, but still above the observed replication rate of 35%. Here, the

model can account for around two-thirds of the observed replication rate gap. This discrepancy

1In social science experiments, concerns over low power in previous replication studies motivated a higher-
powered design consisting of two stages (Camerer et al., 2018). I predict replication outcomes in the first stage,
where replication power was calibrated to detect three-quarters of the original effect size with 90% power.
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suggests that factors not included in the model – for example, heterogeneous treatment effects,

p-hacking, differences across subfields – may be important in psychology.

To be clear, the results in this article do not suggest that there is no problem of selective

publication, only that the replication rate is not a meaningful measure for detecting it. The

prevalence of the so-called ‘file-drawer’ problem and its distortions are well documented (Ioan-

nidis, 2008; Franco et al., 2014; Gelman and Carlin, 2014; Landis et al., 2014; Mervis, 2014;

Gelman, 2018; Andrews and Kasy, 2019; Abadie, 2020). Responses to mitigate these distortions

include results-blind peer review (Chambers, 2013; Foster et al., 2019), journals dedicated to

publishing insignificant findings2, and even cash incentives for publishing null findings (Nature

2020). The results in this article suggest that the replication rate is a poor metric to gauge

whether such reforms are successful in reducing selective publication.

I conclude by discussing alternative replication measures that are more responsive to the

suppression of significant results. I conduct policy simulations using the estimated model to

evaluate how various measures change as selective publication varies in intensity. In line with

the first main theoretical result, the replication rate is completely unresponsive to changes

in the probability of publishing insignificant results. The same conclusion holds for common

alternative measures of replication if only significant results are chosen for replication. Instead, I

examine three alternative measures calculated over significant and insignificant results: whether

a replication’s 95% confidence interval covers the original result; replication based on meta-

analysis; and the prediction interval approach (Patil et al., 2016). For evaluating efforts to

reduce selective publication, the simulation results show that the prediction interval approach

may provide a useful alternative to the replication rate, the confidence interval measure, and

the meta-analysis approach. The prediction interval measure performs well because it explicitly

incorporates variation in both original and replication estimates. In particular, it accounts for

the fact that low-powered original studies are relatively uninformative about true effects, and

hence a large range of replication estimates are statistically consistent with them.

Related Literature.—This article contributes to the large literature on metascience and pub-

lication bias (Card and Krueger, 1995; Ioannidis, 2005; Rothstein et al., 2006; Gorroochurn et

al., 2007; Ioannidis, 2008; Button et al., 2013; Franco et al., 2014; Gelman and Carlin, 2014;

Landis et al., 2014; Mervis, 2014; Maxwell et al., 2015; Anderson and Maxwell, 2017; Ioannidis

et al., 2017; Stanley et al., 2018; Gelman, 2018; Klein et al., 2018; Miguel and Christensen, 2018;

Shrout and Rodgers, 2018; Amrhein et al., 2019a,b; Tackett et al., 2019; Andrews and Kasy,

2019; Christensen et al., 2019; Frankel and Kasy, 2022; DellaVigna and Linos, 2022; Nosek et

al., 2022). It is not the first to question the replication rate. Amrhein et al. (2019b) criticize the

2Examples include: Positively Negative (PLOS One); Journal of Negative Results in Biomedicine; Journal
of Articles in Support of the Null Hypothesis; Journal of Negative Results - Ecology and Evolutionary Biology.
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replication rate because it emphasizes statistical significance over scientific significance. This

can lead to incongruous conclusions. For example, two studies with identical point estimates,

but where one is statistically significant and the other is not due to sample size differences, will

be counted as ‘inconsistent’ under the current definition of the replication rate. Separately, An-

drews and Kasy (2019) and Kasy (2021) provide stylized examples showing that the replication

rate can vary widely depending on the latent distribution of studies (i.e. the joint distribution

of true effects and standard errors for published and unpublished studies). This article con-

tributes to these criticisms. First, it shows that the replication rate is completely insensitive

to the degree of selective publication on insignificant results for a fixed latent distribution of

studies. Second, it establishes formally that the expected replication rate is bounded above by

its nominal target owing to issues with common power calculations in replication studies. This

result does not rely on any distributional assumptions about latent studies and holds even for

highly-powered original studies (although the size of the gap is sensitive to power in original

studies). It then shows empirically that the interaction of low power in original studies and

issues with replication power alone can adequately explain observed replication rates in experi-

mental economics and social science. Empirically, this article builds on Anderson and Maxwell

(2017), which calculates replication rates using fully simulated data. This article predicts the

replication rate using a model empirically calibrated on data from real-world replication stud-

ies. This allows for a comparison between model-based predictions and observed replication

rates.

This article also contributes to the growing literature on predicting research outcomes

(Dreber et al., 2015; Camerer et al., 2016; Altmejd et al., 2019; DellaVigna et al., 2019; Camerer

et al., 2018; DellaVigna et al., 2020; Gordon et al., 2020). In the replication literature, the main

focus is on predicting the outcomes of individual replications, as well as the aggregate measures

like the overall replication rate, using alternative methods such as surveys, prediction mar-

kets, and machine learning. Altmejd et al. (2019) use ‘black-box’ machine learning methods to

predict individual replication outcomes and find that the most important features predicting

replication are measures of statistical power. This accords well with the results in this article.

The structural model developed here provides a theoretical underpinning for this atheoretical

machine learning result, namely, that low-powered original studies and the non-linearity of the

power function lead to low replication probabilities.

I. Simple Example

A simple stylized example illustrates the key ideas. Consider research on the impact of a

new drug on health outcomes. Assume the (unobserved) true treatment effect is θ “ 2.5.

Institute for Replication I4R DP No. 3
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Researchers conduct a large number of independent studies to learn about θ, each producing

an estimated effect size X˚ drawn from a Np2.5, 1q distribution. However, only a subset may

be published because publication depends on a study’s finding. Denote published studies as

X, which come from the distribution of X˚ conditional on publication. Now suppose a large-

scale replication is conducted on published studies. Replication estimates Xr are drawn from

a Np2.5, σrpXq2q distribution, where replication standard errors σrpXq are calculated to detect

the original estimates X with 90% power. This method of calculating power is perhaps the

most common approach in replications (e.g. Open Science Collaboration (2015); Camerer et

al. (2016)). The question we are interested in answering is: What is the replication rate under

different standards for publishing statistically significant and insignificant results?

I consider three vastly different publication regimes and show that all produce exactly the

same replication rate. First, the no selective publication regime, where all results are published

irrespective of their statistical significance. Second, a regime that publishes all significant

results and censors all insignificant results. Third, a regime where insignificant results are five

times more likely to be published than significant results. The first row of Figure 1 shows

the relative publication probabilities for each of these regimes at different t-ratios. The second

row shows the implied distribution of published estimates X. As expected, the distribution of

published estimates is very different across the three regimes. However, the key observation is

that conditional on a published result being significant, the distributions are identical (row 3

in Figure 1). This implies that the replication rate – defined as the share of significant findings

with the same sign and significance in replications – must be the same under all publication

regimes.

There are three main takeaways. Each is highlighted by the descriptive statistics at the

bottom of Figure 1. First, the replication rate does not depend on the probability of publishing

insignificant results. Selective publication against insignificant findings is therefore unlikely to

explain the low replication rates observed in practice. A caveat is that selective publication

favoring significant results may incentivize researchers to manipulate results to obtain signifi-

cance. This analysis shows that the replication rate will fall short of intended power even in

the absence of such manipulation. The empirical results show that a model without manip-

ulation produces accurate predictions of the replication rate in experimental economics and

experimental social science.

The second takeaway is that conditioning published studies on significance induces upward

bias in original estimates. The replication rate definition imposes this conditioning, such that

the statistic itself induces inflationary bias. Unbiased replication estimates regress to the mean.

This is a consequence of the replication rate definition and is the same across all regimes.

Third, the replication rate is below its 90% intended target in all three regimes, even in this

Institute for Replication I4R DP No. 3
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Regime 1 Regime 2 Regime 3

All published results

Expectation of original estimates EpXq 2.50 2.99 1.87

Bias of original estimates EpXq ´ θ 0.00 0.49 ´0.63

Significant published results

Expectation of original estimates EpX|X ě 1.96q 2.99 2.99 2.99

Expectation of replication estimates EpXr|X ě 1.96q “ θ 2.50 2.50 2.50

Replication probability (90% target) Pp|Xr| ě 1.96σr, sgnpXrq “ sgnpXq|θ “ 2.5, σr) 0.77 0.77 0.77

Figure 1. Publication Regimes, Distributions of Published Results, and the Replication Rate

Notes: Published estimates X are assumed to be drawn from a normal distribution centered at θ “ 2.5 with
standard error σ “ 1, which may be reweighted based on the conditional publication function shown in the first
row. In Regime 1, all results are published. In Regime 2, only statistically significant results are published. In
Regime 3, insignificant results are five times more likely to be published than significant results. Replication
estimates Xr are drawn from a Np2.5, σrpXq2q distribution, where σrpXq “ 3.242{|X| is set to detect the
original effect size X with 90% power using the common power rule. Statistics are based on 106 simulation
draws.

Institute for Replication I4R DP No. 3

9



8

simple example with no researcher manipulation or heterogeneity in true effects. I will show

in Section II below that this is the result of issues with the common approach to calculating

power in replication studies.

An additional observation concerns the size of the gap between the replication rate and its

intended target. In this example, the true effect is θ “ 2.5 for all studies, which implies that

power in original studies to detect a positive significant effect is r1´Φp1.96´2.5qsˆ100 “ 71%.

This corresponds to a replication rate of 77%, which falls short of the 90% target. An important

question is whether this gap persists for different distributions of true effects, or, equivalently,

different distributions of power in original studies.3 Figure 2 shows the relationship between

power in original studies and the expected replication rate. For any level of original power, the

expected replication rate is below its intended target of 90%. Importantly, the size of the gap

is very sensitive to power in original studies. If the null hypothesis is true pθ “ 0q, then original

power is equal to 2.5% and the probability of ‘successful’ replication is also equal to 2.5%. On

the other hand, the probability of replication approaches its intended target of 90% as original

power approaches 100% (or equivalently, as θ{σ Ñ 8).

It is noteworthy that estimates of power in the literature are substantially lower than the

71% assumed in this simple example. For instance, median power is estimated to be 18% or

less in empirical economics (Ioannidis et al., 2017); 18% in neuroscience (Button et al., 2013);

10% or less in political science (Arel-Bundock et al., 2022); and 36% in psychology (Stanley et

al., 2018). This suggests that very low replication rates should be expected in practice when

using the common power rule to set replication power.

II. General Case

Conclusions in the simple example hold more generally. This section formalizes these ideas in

a general setting, building on the model of selective publication in Andrews and Kasy (2019).

A. Model of Large-Scale Replication Studies

Suppose a large-scale replication study is conducted and we observe the estimated effect sizes

and standard errors for original studies and their replications. The data-generating process

of these studies is modelled as a truncated sampling process. The model is presented here in

general form, while the empirical applications make distributional and functional form assump-

tions. Upper case letters denote random variables, lower case letters realizations. Latent studies

3Statistical power to detect an effect with the ‘correct’ sign, 1 ´ Φp1.96 ´ θ{σq P p0.025, 1q, is a strictly
increasing function of the ratio of the true effect and the standard error over the positive real line. Moreover,
the expected replication rate depends only on this ratio and the rule for setting replication power.
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Figure 2. Original Power and the Expected Replication Rate Under the Common Power Rule

Notes: Original power and the expected replication rate under the common power rule are both functions of
ω “ θ{σ (normalized to be positive). Original power to obtain a significant effect with the same sign as the
true effect is equal to 1 ´ Φp1.96 ´ ωq. The expected replication rate is calculated by taking 106 draws of Z

from Npω, 1q and then calculating 10´6
ř106

i“1

“

1 ´ Φ
`

1.96 ´ signpziq
ω

σrpzi,βnq

˘‰

, with intended power equal to

1 ´ βn “ 0.9 and depicted by the horizontal dashed line. The replication standard error is calculated using the
common power rule to detect original effect sizes with 90% power, which is given by σrpzi, β

nq “ |zi|{3.242.
Further details on these formulas are provided in Section II.

(published or unpublished) have a superscript * and published studies have no superscript. The

model has five stages:

1. Draw a population parameter and standard error: Draw a research question with

population parameter (Θ˚) and standard error (Σ˚):

pΘ˚,Σ˚
q „ µΘ,Σ

where µΘ,Σ is the joint distribution of these random variables.

2. Estimate the effect: Draw an estimated effect from a normal distribution with param-

eters from Stage 1:

X˚
|Θ˚,Σ˚

„ NpΘ˚,Σ˚2
q

3. Publication selection: Selective publication is modelled by the function ppq, which

returns the probability of publication for any given t-ratio. Let D be a Bernoulli random
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variable equal to 1 if the study is published and 0 otherwise, where

PpD “ 1|X˚
{Σ˚

q “

$

&

%

psigpX˚{Σ˚q if S˚
X “ 1

pinsigpX˚{Σ˚q if S˚
X “ 0

where S˚
X is an indicator variable that equals one if

ˇ

ˇX˚{Σ˚
ˇ

ˇ ě 1.96 and zero otherwise.4

4. Replication selection: Replications are sampled from published studies pX,Σ,Θq; that

is, the distribution of latent studies pX˚,Σ˚,Θ˚q conditional on publication pD “ 1q.

Replication selection is modelled by the function rpq, which returns the probability of

being chosen for replication for any given t-ratio. Let R be a Bernoulli random variable

equal to 1 if the study is chosen for replication and 0 otherwise, where

PpR “ 1|X{Σq “

$

&

%

rsigpX{Σq if SX “ 1

rinsigpX{Σq if SX “ 0

where SX is an indicator variable that equals one if
ˇ

ˇX{Σ
ˇ

ˇ ě 1.96 and zero otherwise.

5. Replication: For results chosen for replication, a replication draw is made with

Xr|X,Σ,Θ, σ
2
rpX,Σ, βn

q, D “ 1, R “ 1 „ N
´

Θ, σrpX,Σ, β
n
q
2
¯

where replication standard errors σrpX,Σ, β
nq are chosen by replicators as a function of

the original estimate, standard error, and intended statistical power 1 ´ βn.

We observe i.i.d draws of
`

X,Σ, Xr, σrpX,Σ, β
nq

˘

from the conditional distribution of
`

X˚,Σ˚, Xr, σrpX
˚,Σ˚, βnq

˘

given D “ 1 and R “ 1. The Andrews and Kasy (2019) model

consists of the first three steps, which are used to identify and estimate ppq. Subsequent repli-

cation steps are introduced to analyze the replication rate.

Step 4 models the replication selection mechanism. This differs across replication studies.

For the theory, we assume that the set of significant results chosen for replication is a random

sample from published, significant results; selection of insignificant findings for replication,

rinsigpq, has no impact on the conclusions and can take any form.

Step 5 models how replicators set statistical power. This is a critical factor in determining

replication probabilities. Note that replication estimates are assumed to be unbiased estimates

4Notation distinguishing the publication probability function ppq over significant and insignificant regions
is convenient for presenting and proving the formal results; the 1.96 cutoff corresponds to the threshold over
which results are included in the replication rate.
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of the true effect and generated from exact replications (i.e. there is no treatment effect het-

erogeneity across original and replication studies).

In what follows, we normalize θ to be positive and assume that the distribution of true

effects, µΘ, has support on an open set on the positive real line.5 The joint probability of

publication and being chosen for replication is identified up to scale. Proofs make use of

properties of replication probability function in Appendix A. Proposition proofs are in Appendix

B.

B. The Replication Rate and Selective Publication

We begin by defining the replication probability of a single study and then use this to define

the expected replication probability over multiple studies.

Definition 1 (Replication probability of a single study). The replication probability of a pub-

lished study pX,Σ,Θq chosen for replication pR “ 1q is

RP
´

X,Θ, σrpX,Σ, βnq

¯

“ P

˜

|Xr|

σrpX,Σ, βnq
ě 1.96, signpXrq “ signpXq

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βnq, R “ 1

¸

(1)

This definition captures the dual requirement that the replication estimate is statistically

significant and has the same sign as the original study. The replication rate is an aggregate

statistic based the fraction of ‘successful’ replications across multiple original studies. The

population analogue of the replication rate is defined next:

Definition 2 (Expected replication probability). The expected replication probability is defined
over published studies pX,Σ,Θq which are chosen for replication pR “ 1q and statistically
significant pSX “ 1q. It is equal to

E

”

RP
`

X,Θ, σrpX,Σ, β
nq

˘
ˇ

ˇR “ 1, SX “ 1
ı

“

ż

RP
´

x, θ, σrpx, σ, β
nq

¯

fX˚,Σ˚,Θ˚|D,R,S˚
X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

dxdσdθ (2)

This definition highlights an important distinction between being chosen for replication and

being included in the replication rate calculation: while insignificant results may be replicated,

they are not, by definition, included in the replication rate. This is the main definition of the

replication rate reported in most large-scale replication studies (Klein et al., 2014; Open Science

Collaboration, 2015; Camerer et al., 2016, 2018; Klein et al., 2018).6 With this, we can state

our first main result.
5Large-scale replications include studies that examine different questions and outcomes. Normalizing true

effects to be positive is justified because relative signs across studies are arbitrary.
6Replication power calculations themselves are typically designed for using this definition. Alternative def-
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Proposition 1 (The replication rate does not depend on selective publication of null results).

The expected replication probability depends on the probability of publishing significant results,

psigpq, and does not depend on the probability of publishing insignificant results, pinsigpq.

Proposition 1 is somewhat counter-intuitive ex-ante, with over 90% of researchers citing

‘selective reporting’ as a contributing factor to irreproducibility (Baker, 2016). It follows be-

cause the replication rate definition does not include statistically insignificant results, which

makes it uninformative about the degree to which such results are or are not published. Thus,

even if insignificant results are published, they are not included in the replication rate, which

focuses only on the replication probability for significant published results. The replication

rate instead depends on replication power, the distribution of latent original studies, and the

relative probability of publication when the absolute value of the t-ratio is greater than 1.96,

psigpq. Appendix C provides an example showing how the replication rate varies as we change

psigpq.

A noteworthy feature of Proposition 1 is that it applies to any rule for setting replication

power that depends on the original study’s effect size, its standard error, and statistical power

target 1 ´ βn. This covers the two most common methods of setting power in large-scale

replication studies. The first is the common power rule to detect original effect sizes with

power equal to 1 ´ βn (e.g. Open Science Collaboration (2015); Camerer et al. (2016)). The

second is the fractional power rule, a high-powered variant that sets replication power to detect

some fraction of the original effect size (e.g. Camerer et al. (2018, 2022)).

A caveat is that the model assumes a fixed distribution of latent studies, whereas in practice

it may be endogenous. For example, changes in the publication of insignificant results could

alter the behaviour of researchers, by changing the likelihood that they engage in specification

searching or manipulation (Simonsohn et al., 2014; Brodeur et al., 2016, 2020, 2022). Incor-

porating such behavior in the model would allow the publication probability function pinsigpq

to affect either the joint distribution µΘ,Σ (researchers changing the questions they ask); the

interdependence of draws from µΘ,Σ within a study (multiple hypothesis testing and specifi-

cation searching); or the distribution of the estimated effect (manipulation of findings), e.g.

if X˚ P p1.96σ ´ ϵ, 1.96σq with ϵ ą 0, then with some probability the researcher misreports

X˚ P p1.96σ, 1.96σ ` ϵq. I examine the possible impact of manipulation on the replication rate

in Section III.

initions for defining successful replications frequently reported alongside the main definition are: the relative
effect size; whether the 95% confidence interval of the replication effect size includes the original effect size;
replication based on meta-analytic estimates; the 95% prediction interval approach (Patil et al., 2016); the
‘small telescopes’ approach (Simonsohn, 2015); and the one-sided default Bayes factor (Wagenmakers et al.,
2016).
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Finally, note that the insights of Proposition 1 apply more generally to any measure of

replication that can be written in the form E
“

gpX,Σ, Xr, β
nq|R “ 1, SX “ 1

‰

.7 Intuitively,

any measure that excludes null results will contain limited information about their prevalence

in the published literature. Statistics exclude null results for different reasons. For example,

the replication rate excludes them in its definition. On the other hand, large-scale replication

studies may only select significant results for replication (i.e. R “ 1 ñ S˚
X “ 1). If this is

the case, then common alternative measures of replication will also be unresponsive to the

degree of selective publication on null results e.g. the relative effect size
`

i.e. gpX,Xrq “

Xr

X

˘

and whether or not the replication confidence interval contains the original estimate
`

i.e.

gpX,Σ, Xr, β
nq “ 1

“

X P
`

Xr ´ 1.96σrpX,Σ, β
nq, Xr ` 1.96σrpX,Σ, β

nq
˘‰˘

.

C. Common Power Calculations and Low Replication Rates

This section defines the common power rule, and then shows how it leads to replication rates

that fall consistently below intended power.

Definition 3 (Common power rule). The common power rule to detect original effect size x

with intended power 1 ´ βn sets the replication standard error to

σrpx, β
n
q “

|x|

1.96 ´ Φ´1pβnq
(3)

This is equivalent to setting the replication sample size to N ˆ σ
|x|

“

1.96 ´ Φ´1pβnq
‰

, where

N and σ are the original study’s sample size and standard deviation, respectively.

Lemma 1 (Justification of the common power rule). Consider a published study px, σ, θq. If

x “ θ and a replication uses the common power rule to detect the original effect with intended

power 1 ´ βn, then

RP
´

θ, θ, σrpθ, β
n
q

¯

“ 1 ´ βn (4)

Proof. Substitute the common power rule in the replication probability function derived in

Lemma A1.1 in Appendix A. If x “ θ, then

RP
`

θ, θ, σrpθ, βnq
˘

“ 1´Φ

ˆ

1.96´signpθq
θ

σrpθ, βnq

˙

“ 1´Φ

ˆ

1.96´
θ

θ

`

1.96´Φ´1pβnq
˘

˙

“ 1´βn (5)

7This is Proposition B1 in Appendix B.

Institute for Replication I4R DP No. 3

15



14

Lemma 1 provides the justification for the common power rule. Its reasoning is as follows.

Replication probabilities depend crucially on the unobserved true effect θ. If there are no

issues with the original study, then its effect size x should be a reasonable proxy for the true

effect θ for setting statistical power. Extending this idea to multiple studies suggests that the

replication rate should be close to intended power 1 ´ βn. In practice, it consistently falls

below this benchmark (Open Science Collaboration, 2015; Camerer et al., 2016, 2018; Klein

et al., 2018). This is commonly interpreted as an indicator of problems with original studies,

replication studies, or both.

My next main result shows that even in the absence of any such problems, the expected

replication rate will fall short of its intended target:

Proposition 2 (The common power rule implies the expected replication rate is below its

intended target) Suppose psigpq is symmetric about zero, non-zero, and weakly increasing in

absolute value. Allow pinsigpq to take any form. If replication standard errors are set by the

common power rule to detect original estimates with intended power 1 ´ βn ě 0.8314, then

E

”

RP
`

X,Θ, σrpX,Σ, β
n
q
˘ˇ

ˇR “ 1, SX “ 1
ı

ă 1 ´ βn (6)

Proposition 2 holds under fairly general conditions. It does not rely on any distributional

assumptions for latent studies and remains true even under ‘ideal’ conditions of no selective

publication, no researcher manipulation, replications with identical designs and comparable

samples (i.e. no heterogeneity in true effects), no measurement error, random sampling in

replication selection, and high-powered original studies (although the size of the gap will depend

on this). The expected replication probability still falls below intended power in this case, and

thus points to fundamental difficulties in interpreting replication rate gaps observed in large-

scale replication studies.

There are three main factors underlying this result. I discuss each in reference to the

decomposition of the replication rate gap in equation 7, which I implement in the empirical

section to quantify the relative contribution of each factor (for clarity, the notation in the

decomposition omits the conditioning on R “ 1).

p1 ´ βnq ´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1
‰

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

replication rate gap

“ p1 ´ βnq ´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇrptq “ 1 @t, pptq “ 1 @t,X ě 0
‰

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

(i) non-linearity gap

`P

´

X ă 0|SX “ 1
¯´

E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ă 0
‰

¯

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(ii) ‘wrong’ sign gap
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`E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇrptq “ 1 @t, pptq “ 1 @t,X ě 0
‰

´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(iii) regression-to-the-mean gap

(7)

Proof. Write the expected replication probability as

E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1
‰

“ E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

`P

´

X ă 0|SX “ 1
¯´

E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ă 0
‰

¯

´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

¯

(8)

To arrive at equation (7), substitute equation (8) into the replication rate gap; add and

subtract E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇrptq “ 1 @t, pptq “ 1 @t,X ě 0
‰

; and rearrange the terms.

The first issue with the common power rule is that it does not account for the fact that the

replication probability is a non-linear function of the original estimate X. This implies that

even for unbiased original estimates, the expected replication probability does not in general

equal the replication probability evaluated at true effect (i.e. for X „ Npθ, σ2q, in general:

ErRP pX,Θ, σrpX, β
nqq|Θ “ θs ‰ RP pθ, θ, σrpθ, β

nqq “ 1 ´ βn). In fact, one can show that the

replication probability function is concave in X around the true effect Θ, so Jensen’s inequality

implies that the expected probability of the unbiased original estimates will tend to fall below

intended power. This undermines the justification of the common power rule in Lemma 1,

which does not account for the fact that the replication probability function is non-linear and

X is a random variable. The first term in the decomposition quantifies the importance of this

insight. It is equal the difference between intended power 1 ´ βn and the expected replication

rate assuming that all results are published and chosen for replication. Note that original

estimates X in this term are unbiased for true effects Θ because there is no publication or

replication selection based on results (i.e. rptq “ 1 @t, pptq “ 1 @t). Note also that conditioning

this expectation on original results with the ‘correct’ sign allows us to identify the impact of

non-linearity on replication probabilities, separate from the impact of attempting to replicate

original estimates with the ‘wrong’ sign, which we turn to next.

The second issue with common power calculations is that random sampling variation means

that original estimates will occasionally have the ‘wrong’ sign. In this case, the replication

probability is bounded above by 0.025 since X ă 0 implies RP
`

X,Θ, σrpX, β
nq|X ă 0

˘

“

Φ
`

´ 1.96 ´ Θ
σrpX,βnq

˘

ă 0.025. The likelihood that original estimates have the opposite sign is

higher in settings with low power and small true effects (Gelman and Carlin, 2014; Ioannidis

et al., 2017). The contribution of this explanation to the replication rate gap is equal to

the difference between the expected replication probability of estimates with the ‘correct’ and

those with the ‘wrong’ sign, weighted by the probability that original estimates have the ‘wrong’
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sign. Both expectations condition on statistical significance, in line with the definition of the

replication rate.

Third, the replication rate conditions on statistical significance, which mechanically induces

upward bias in the set of results included in the replication rate.8 This is an inevitable conse-

quence of the replication rate definition itself. Regression to the mean in (unbiased) replication

attempts is to be expected, and common power calculations calibrated to detect inflated original

effects may be underpowered for recovering smaller true effects. This statistical fact invalidates

the assumption underpinning the justification of the common power rule in Lemma 1. In gen-

eral, a significant original estimate X is not an unbiased proxy for the unobserved true effect Θ.

To measure the importance of this explanation, the decomposition compares the difference in

expected replication probabilities between: (i) a regime that publishes and replicates all results,

and includes all of them in its replication rate calculation; and (ii) a regime which only includes

significant results in its replication rate calculation, as is typically the case. The sign of this

term is ambiguous. For any fixed value of Θ, effect sizes will be exaggerated under regime (ii),

which lowers the probability of replication relative to regime (i). However, by conditioning on

statistical significance, regime (ii) tends to select higher values of Θ, which has the impact of

increasing replication probabilities relative to regime (i). The sign and magnitude of the term

are determined by the net effect.

III. Empirical Applications

To what extent can Proposition 2 explain low replication rates observed in practice? To evaluate

the extent to which issues with power calculations can explain observed replication rates, I

conduct the following empirical exercise:

1. I estimate the latent distribution of studies using an augmented version of the Andrews

and Kasy (2019) model applied to three large-scale replications. Estimation does not use

any data from replications.

2. I use the estimated model to predict what fraction of significant results would replicate,

absent any other issues such as p-hacking or heterogeneity.

3. I compare these predictions (which do not use any data from the replications) to the

actual replications.

Accurate predictions provide evidence that the issues with power calculations underlying

Proposition 2 can adequately explain low observed replication rates. Discrepancies suggest

factors not included in the model may also be important.

8For a formal statement and proof, see Proposition B2 in Appendix B.
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A. Replication Studies

I examine three replication studies. Camerer et al. (2016) replicate results from all 18 between

subjects laboratory experiments published in American Economic Review and Quarterly Jour-

nal of Economics between 2011 and 2014. Open Science Collaboration (2015) replicate results

from 100 psychology studies in 2008 from Psychological Science, Journal of Personality and So-

cial Psychology, and Journal of Experimental Psychology: Learning, Memory, and Cognition.

Following Andrews and Kasy (2019), I consider a subsample of 73 studies with test statistics

that are well-approximated by z-statistics. Camerer et al. (2018) replicate 21 experimental

studies in the social sciences published between 2010 and 2015 in Science and Nature.

In Camerer et al. (2016), replicators set power to detect original effects with at least 90%

power. In Open Science Collaboration (2015), replication teams were instructed to achieve at

least 80% power, and encouraged to obtain higher power if feasible. Reported mean intended

power was 92% in both cases. Camerer et al. (2018) implemented a higher-powered design to

counter concerns over low statistical power in earlier replication studies. This design consists of

two stages. In the first stage, replicators implemented power to detect 75% of the original effect

with 90% power. In the second stage, further data collection was undertaken for insignificant

results from the first stage, such that the pooled sample from both stages was calibrated to

detect half of the original effect size with 90% power. I predict replication outcomes in the first

stage.9

B. Estimation

To calculate the expected replication rate, it is necessary to estimate the latent distribution

of studies µΘ,Σ. To do this, I estimate an augmented version of the empirical model in An-

drews and Kasy (2019). Specifically, Andrews and Kasy (2019) develop an empirical model

to estimate the marginal distribution of true effects Θ˚, but not of standard errors Σ˚. Since

predictions of the replication rate also require knowledge of the distribution of Σ˚, I augment

the model to estimate the joint distribution of pΘ˚,Σ˚q. Estimation is based on the ‘metastudy

approach’, which only uses data from original studies. Identification requires that true effects

are statistically independent of standard errors, a common assumption in meta-analyses. I

9Predicting second-stage outcomes is complicated by the fact that one study that was ‘successfully’ replicated
in the first stage was erroneously included in the second stage. There are two additional reasons for predicting
first-stage outcomes. First, Andrews and Kasy (2019) estimate their empirical model for social science exper-
iments on first-stage outcomes, and this article uses identical model specifications to minimize concerns about
specification searching to obtain accurate forecasts. Second, ongoing replication studies use the fractional power
rule in a single-stage design analogous to the first stage in Camerer et al. (2018). For example, in the ongoing
MTurk Replication Project (Camerer et al., 2022), the replication procedure is to ‘carry out the data collection
based on having 90% power to detect 67% of the effect size reported in the original study.’
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assume that Σ˚ follows a gamma distribution: Γpκσ, λσq.

For all other aspects of the model, I implement identical parametric assumptions and model

specifications as Andrews and Kasy (2019), who examine the same three applications with

a focus on estimating publication bias. Matching their model specifications, I assume that

|Θ˚| follows a Γpκθ, λθq distribution; and that the selection function ppX{Σq ˆ rpX{Σq, which

measures the joint probability of being published and chosen for replication, is a step-function

parameterized by βp. The inclusion of steps at common significance levels p1.64, 1.96, 2.58q

varies slightly across applications owing to different approaches for choosing which studies to

replicate.10

Table 1 – Maximum Likelihood Estimates

Latent true effects Θ˚ Latent standard errors Σ˚ Selection parameters
κθ λθ κσ λσ βp1 βp2 βp3

Economics experiments

Augmented model 1.426 0.148 2.735 0.103 0.000 0.039 –
(1.282) (0.072) (0.536) (0.031) (0.000) (0.05) –

Andrews and Kasy (2019) 1.343 0.157 – – 0.000 0.038 –
(1.285) (0.075) – – (0.000) (0.05) –

Psychology experiments

Augmented model 0.782 0.179 4.698 0.044 0.012 0.303 –
(0.782) (0.179) (4.698) (0.044) (0.012) (0.303) –

Andrews and Kasy (2019) 0.734 0.185 – – 0.012 0.300 –
(0.408) (0.056) – – (0.007) (0.134) –

Social science experiments

Augmented model 0.070 0.663 5.792 0.028 0.000 0.000 0.584
(0.091) (0.326) (1.754) (0.009) (0.000) (0.000) (0.419)

Andrews and Kasy (2019) 0.070 0.663 – – 0.000 0.000 0.583
(0.091) (0.327) – – (0.000) (0.000) (0.418)

Notes: Maximum likelihood estimates for economics (Camerer et al., 2016), psychology (Open Science Collab-
oration, 2015) and social sciences (Camerer et al., 2018). Robust standard errors are in parentheses. Latent
true effects and standard errors are assumed to follow a gamma distribution; parameters (κ, λ) are the shape
and scale parameters, respectively. In economics and psychology, joint publication and replication probability
coefficients are measured relative to the omitted category of studies significant at 5 percent level. For example,
in experimental economics, an estimate of βp2 “ 0.038 implies that results which are significant at the 5% level
are 26.3 times more likely to be published and chosen for replication than results that are significant at the 10%
level but insignificant at the 5% level. In social sciences, the omitted category is studies significant at the 1%
level. Andrews and Kasy (2019) estimates are reproduced from accessible data and code from their analysis.

10Details on mechanisms for replication selection are outlined in Appendix D. With Z “ X{Σ, the selection
functions in each application are: rpX{Σq ˆ ppX{Σq91

`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in economics;

rpX{Σq ˆ ppX{Σq91
`

|Z| ă 1.64qβp1 ` 1
`

1.64 ď |Z| ă 1.96qβp2 ` 1
`

|Z| ě 1.96q in psychology; and rpX{Σq ˆ

ppX{Σq91
`

1.96 ď |Z| ă 2.58qβp3 ` 1
`

|Z| ě 2.58q for social science experiments. Separate identification of the
publication probability function, ppq, requires that we specify the replication selection function rpq.
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Table 1 presents the maximum likelihood estimates. For each large-scale replication study,

the first set of rows shows parameter estimates for the augmented model used in this article,

and the second set of rows reports estimates from reproducing the results for the standard

model in Andrews and Kasy (2019).11 For common parameters, estimates are very close.

C. The Predicted Replication Rate

This section describes how the estimated models in Table 1 can be used to generate replication

rate predictions by simulating replications. Replication probabilities depend on power calcula-

tions. I assume that simulated replications implement the power calculations actually used in

each application. The procedure is as follows:

1. Draw 106 latent (published or unpublished) research questions and standard errors

pθ˚sim, σ˚simq from the estimated joint distribution µ̂Θ,Σpκ̂θ, λ̂θ, κ̂σ, λ̂σq.

2. Draw estimated effects x˚sim|θ˚sim, σ˚sim „ Npθ˚sim, σ˚sim2q for each latent study.

3. Use the estimated selection parameters pβ̂p1, β̂p2, β̂p3q to determine the subset of studies

that are published and chosen for replication.

4. For the subset of replication studies, calculate the replication standard error σsim
r accord-

ing to the following rule

σsim
r pxsim, βn, ψq “

ψ ¨ |xsim|

1.96 ´ Φ´1pβnq
(9)

where ψ “ 1 and 1 ´ βn “ 0.92 in economics and psychology, which corresponds to the

common power rule; and ψ “ 3
4
and 1 ´ βn “ 0.9 in social science experiments, which

corresponds to a fractional power rule.12

5. Simulate replications by drawing replication effect sizes xsimr |θsim, σsim
r „ Npθsim, σsim2

r q

11Estimates for psychology in this article are slightly different to the meta-study estimates reported in Andrews
and Kasy (2019) (their Table 2). The difference is due to a misreported p-value in the raw psychology data for
one study, which leads to an erroneous outlier in the distribution of original study standard errors. Table 1 in
this article reproduces estimates of their model after correcting data for this study. Excluding this study in the
augmented model leads to very similar replication rate predictions.

12This assumes that all simulated replications set intended power equal to the mean of reported intended
power. In practice, there was some variation in the application of the power rule around the mean. Appendix
E reports predicted replication rates allowing for variation in intended power across studies that matches the
empirical variation in each application. Results are very similar and in fact slightly more accurate in all three
applications (61.5% in economics; 52.3% in psychology; and 56.5% in social science).
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Let txi, σi, xr,i, σr,iu
Msig

i“1 be the (simulated) set of published, replicated original studies that

are significant at the 5% level, and their corresponding replication results.13 Msig is the size of

the set. The predicted replication rate is equal to

1

Msig

Msig
ÿ

i“1

1

´

|xr,i| ě 1.96σr,i, signpxr,iq “ signpxiq
¯

(10)

D. Results

Common Power Rule (Economics and Psychology).—Panel A in Table 2 presents the replication

rate predictions. First, consider the replication studies implementing the common power rule.

In experimental economics, the predicted replication rate is 60%, which is very close to the

observed rate of 61.1%. The accuracy of this prediction provides evidence that low power in

original studies in conjunction with replication power issues is sufficient to explain the observed

replication rate. This is also consistent with little evidence of researcher manipulation in

experimental settings (Brodeur et al., 2016, 2020; Imai et al., 2020)

The second row shows the results for psychology, where the model predicts a replication

rate of 54.5%. This is well below mean intended power of 92%, but higher than the observed

replication rate of 34.8%. In this case, the model can account for around two-thirds of the

replication rate gap. The unexplained portion of the gap in psychology suggests that problems

with calculating replication power can account for some but not all of the replication rate gap.

Other factors discussed in the literature and not incorporated in the model may be important,

including heterogeneity in true effects, p-hacking, and measurement error. Another possibility

is that the model should account for differences in replicating main effects and interaction

effects, in addition to differences across subfields. For example, Open Science Collaboration

(2015) and Altmejd et al. (2019) point out that that interaction effects have a substantially

lower probability of replication than main effects, and that the same is true for findings in social

psychology compared to those in cognitive psychology.

Calculating the decomposition of the replication rate gap from equation (7) shows that

failing to account for the non-linearity of the power function explains the overwhelming majority

of the explained replication rate gap in both economics and psychology (Panel B in Table 2). For

intuition, note that the replication probability of a null effect is 0.025. Continuity implies that

true effects close to zero also have very low replication probabilities. Thus, the non-linearity gap

13In both experimental economics and psychology, a small number of original results whose p-values were
slightly above 0.05 were treated as ‘positive’ results and included in the replication rate calculation. To match
this, I set the cutoff for significant findings for the purposes of replication equal to the smallest z-statistic that
was treated as a ‘positive’ result for replication. This is 1.81 in economics and 1.86 in psychology. Predictions
are almost identical with a strict 0.05 significance threshold.
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is large when there is a lot of mass of true effects near zero, which is what is found in practice.

Attempts to replicate original estimates with the ‘wrong’ sign account for between 5.7–8% of

the gap, which also reflects relatively low power in original studies. Regression-to-the-mean

in replication attempts explains 3.1% of the gap in economics, while it actually increases the

replication rate in psychology. The latter outcome arises because conditioning on statistical

significance tends to select larger true effects, which have higher replication probabilities than

small effects; in psychology, this outweighs the fact that for any fixed true effect, conditioning

on significance induces inflationary bias. For more details on the intuition underlying the

decomposition results, see Appendix F.

Fractional Power Rule (Social Sciences).—Concerns over underpowered replication studies

have led to modifications of the common power rule to obtain higher statistical power. A

popular approach is the fractional power rule, where replication power is set to detect some

fraction of the original effect size with a given level of statistical power (e.g. Camerer et al.

(2018) and Camerer et al. (2022)). Consider two theoretical observations before examining

the empirical results for Camerer et al. (2018). First, Proposition 1 applies to the fractional

power rule, namely, the replication rate remains invariant to selective publication of null results.

Second, under the specific rule applied in Camerer et al. (2018), the expected replication rate

Economics experiments Psychology Social sciences
A. Replication rate predictions
Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
Predicted replication rate 0.600 0.545 0.553

B. Decomposition of explained gap
Predicted replication rate gap 0.320 (100%) 0.375 (100%) –

Non-linearity gap 0.292 (91.16%) 0.364 (97.16%) –
Wrong-sign gap 0.018 (5.72%) 0.030 (8.03%) –
Regression-to-the-mean gap 0.010 (3.12%) -0.019 (-5.18%) –

Table 2 – Replication Rate Predictions

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). The replication rate is defined as the share of
original estimate whose replications have statistically significant findings of the same sign. Figures in the first
row report the mean intended power reported in both applications. The second row shows observed replication
rates. The third row reports the predicted replication rate in equation (10) calculated using parameter estimates
Table 1. Panel B calculates the decomposition of the explained replication rate gap in equation (7) using Monte
Carlo methods. In social sciences, power is set to detect three-quarters of the original effect size with 90%
power. This approach does not have a fixed nominal target for the replication rate and thus the decomposition
is not well-defined. Panel C shows average relative effect size predictions. The relative effect size is defined as
the ratio of the replication effect size to the original effect size in Pearson correlation coefficient units.
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can range anywhere between 0.025 and 0.99 depending on the power of original studies.14

Turning to the empirical results for social science experiments, the predicted replication

rate is 55.3%, which is very close to the observed rate of 57.1%. Similarly to economics, this

suggests that low power in original studies and issues with power calculations in replications

alone can adequately explain the observed replication rate.15

Extensions.—I examine four extensions. First, I augment the model to include p-hacking. The

augmented model incorporates an egregious form of manipulation, where researchers who obtain

a marginally insignificant results misreport their findings as significant with some prespecified

probability βh.
16 The main takeaway is that p-hacking lowers the replication rate, but that its

total impact is relatively small when compared to problems with calculating power. A useful

benchmark for what might constitute a realistic value for βh comes from Brodeur et al. (2016)

and Brodeur et al. (2022), who estimate that the proportion of ‘wrongfully claimed significant

results’ is around 10%. In the augmented model, this implies that βh is between 0.22–0.26 across

applications (Table G1 in Appendix G). Under these specifications, the replication rate falls by

between 2-4 percentage points compared to the case with no manipulation. In economics and

psychology, this implies that p-hacking accounts for between 5-6% of the total gap between the

predicted replication rate and mean intended power of 92%. Issues related to calculating power

account for the remainder of the gap. For further details, see Appendix G.

A second extension uses the estimated models in Table 1 to predict the average relative effect

size, a complementary continuous measure of replication defined as the average of the ratio of the

replication effect size and the original effect size. Recall that non-random replication selection

of statistically significant results implies that this measure is below one in expectation, even in

the absence of p-hacking (Proposition B2). I use the estimated models to generate predicted

average relative effect sizes using a similar procedure to the replication rate predictions. The

predicted average relative effect size is below one and relatively close to observed average

relative effect size in economics and social science, although somewhat higher in both cases. In

psychology, the predicted average relative effect size is much higher compared to the observed

value. See Appendix G for more details.

14Under the fractional power rule, the expected replication probability approaches 1 ´ Φr1.96 ´ 1
ψ

`

1.96 ´

Φ´1pβnq
˘

s as θ{σ approaches infinity (or equivalently, as original power approaches one). With the fraction of
original effect size to detect equal to ψ “ 3{4, and intended power set to 1 ´ βn “ 0.9, this limit equals 0.99.

15Applying the same fractional power rule in social science experiments to economics yields a predicted
replication rate of 71.2%. This is higher than in social science experiments because mean power of significant
studies in larger in economics.

16The augmented model for p-hacking assumes that the estimated models in Table 1 accurately reflect the
DGP, which notably do not incorporate p-hacking. This assumption is more plausible for experimental economics
and social science, where replication rate predictions are very accurate, compared to psychology, where they
are not.
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A third extension considers the proposed rule of setting replication power equal to original

power in Appendix E. In a review of 108 psychology replications by Anderson and Maxwell

(2017), 19 (17.6%) implemented this approach. In all three applications, this approach leads

to lower predicted replication rates than under the common power rule.

Given the problems that stem from conditioning on statistical significance, I consider a final

extension where the replication rate is extended to include null results that are ‘replicated’ if

their replications are also insignificant. For empirical models in economics and psychology, this

‘extended’ replication rate remains below intended power under the common power rule.17 For

more details, see Appendix H.

E. Alternative Measures of Selective Publication

Proposition 1 shows that the replication rate is unresponsive to the most salient form of selective

publication. For journals and policymakers seeking to change current norms, this highlights

the need for more informative measures. In this section, I conduct policy simulations using the

estimated model to show how three alternative measures respond to changes in the selective

publication of null results:

1. Replication CI: This measure counts a replication as ‘successful’ if its 95% confidence

interval covers the original estimate: 1
“

X P
`

Xr ´ 1.96Σr, Xr ` 1.96Σr

˘‰˘

.

2. Meta-analysis: The standard criterion of replication with the same sign and significance

is applied to a fixed-effect meta-analytic estimate combining the original and replication

estimate (uncorrected for selective publication): 1
“

|Xm| ě 1.96Σm, signpXmq “ signpXq
‰

where Xm and Σm are the meta-analytic estimate and standard error, respectively.18

3. Prediction interval: Original and replication estimates are counted as ‘consistent’ under

this approach if their difference is not statistically different from zero at the 5% level

(Patil et al., 2016). This is equivalent to estimating a 95% ‘prediction interval’ for the

original estimate and then determining if it covers the replication estimate: 1
“

Xr P

17The extended replication rate is actually lower when there is no selective publication, because a higher
share of small insignificant original effects are selected for replication. The probability that small, insignificant
original effects are also insignificant in replications is relatively low. This is because small original effect sizes
will have large sample sizes in replications under the common power rule. Appendix H also considers this
extended replication rate when setting replication power equal to original power.

18The fixed-effects meta-analytic estimate is a weighted average of original and replication estimates: Xm “
`

ωoX`ωrXr

˘

{pω`ωrq, where the weights are equal to the precision of each estimate i.e. pω, ωrq “ pΣ´2,Σ´2q.
These weights minimize the mean-squared error of Xm (Laird and Mosteller, 1990). The variance of this
estimator is given by Σ2

m “ 1{pω ` ωrq.
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`

X ´ 1.96
a

Σ2 ` Σ2
r, X ` 1.96

a

Σ2 ` Σ2
r

˘‰˘

.19

These alternative replication measures are frequently reported in large-scale replication

studies (Open Science Collaboration, 2015; Camerer et al., 2016, 2018). In simulations, I

calculate these measures over significant and insignificant published results, since conditioning

on statistical significance makes them unresponsive to selective publication on null results

(Proposition B1).

Simulations assume that all results significant at the 5% level are published, and that results

insignificant at the 5% level are published with probability βp. I then calculate how the various

measures change with βp to see how well they capture changes in selective publication (e.g.

because of policy changes that reduce selective publication). Policymakers’ successful efforts to

increase the probability of publishing null results leads to an increase in the policy variable, βp.

Note that while model estimation assumes multiple cutoffs, policy simulations are performed

assuming policymakers influence publication probabilities at a single cutoff (1.96) for simplicity

(i.e. in the policy simulations I set βp “ βp1 “ βp2 and βp3 “ 1 in social science).

Figure 3 shows the results. In line with Proposition 1, the replication rate is completely

unresponsive to changes in the probability of publishing null results, making it a poor measure

to evaluate efforts to reduce selective publication. Turning to alternative measures, note that

the replication CI and meta-analysis measures actually worsen when more null results are

published (βp Ñ 1). This is because less selective publication leads to more small effects

being selected for replication, which have relatively low replication probabilities under these

approaches. By contrast, the prediction interval measure is low when selective publication

is high, and approaches close to 95% as the probability of publishing null results approach

one.20 The prediction interval measure performs well because it explicitly accounts for the

decline in original power as more small effects are selected for replication. Noisy low-powered

original studies contain limited information about true effects, which implies that a large range

of replication estimates are statistically consistent with them.

Overall, for the purpose of evaluating efforts to reduce selective publication, these results

suggest that calculating the prediction interval measure over a random sample of all published

results could provide a useful alternative to the replication rate.

19This approach assumes that original and replication estimates share the same true effect and are statistically
independent. For more details, see the Supplementary Materials for Patil et al. (2016).

20When βp “ 1, the prediction interval measure is slightly higher than 95% in all applications. This is
because it assumes that the original estimate X and the replication estimate Xr are uncorrelated. In practice,
the replication standard error is a function of the original estimate via the common power rule, which generates
some correlation between X and Xr.
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Figure 3. Policy Simulations – Alternative Measures of Replication and Selective Publication

Notes: Details of each measure are provided in the main text. All measures except for the replication rate
are calculated over significant and insignificant published results. Simulations use model estimates of the
latent distribution of studies from Table 1 and set different levels of selective publication βp. The first column
reproduces replication rate predictions in Table 2.

IV. Conclusion

The prominence of the replication rate stems in part from its apparent transparency and ease

of interpretation. However, in reality, it poses substantial difficulties for inference and inter-

pretation. In this article, the first main result shows that the replication rate provides very

limited information about selective publication, despite it being the most frequently cited factor

contributing to irreproducible research (Baker, 2016).
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The second main result shows that problems with power calculations imply that low repli-

cation rates should be expected, even in the case where there is no p-hacking or heterogeneity

in true effects. In particular, low replication rates arise from the interaction between low

power in original studies and the failure to account for non-linearity in the power function

when setting replication power. Accurate model-based replication rate predictions suggest that

problems with power calculations alone are sufficient to explain observed replication rates in

experimental economics and social science.

In light of these results, a reassessment of the empirical content of the replication rate is

necessary. In particular, caution should be applied when interpreting the replication rate from

large-scale replication studies that use the common power rule to detect original effect sizes

with some prespecified power target. In general, these targets are not attainable in expectation,

and observed replication rates say little about the most salient form of selective publication.

Simulations show that the prediction interval approach proposed by Patil et al. (2016) may

provide a useful alternative for measuring selective publication. Finally, these results provide

additional evidence in support of recommendations to place greater focus on statistical power for

judging the credibility of, and uncertainty surrounding, published research findings (Ioannidis,

2005; Gelman and Carlin, 2014; Anderson and Maxwell, 2017; Camerer et al., 2019).
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Appendix

A. Properties of the Replication Probability Function

This Appendix derives properties of the replication probability function (Definition 1). The first

‘property’ simply provides a convenient, compact notation. The remaining properties consider

the replication probability function under the common power rule to detect original effect sizes

with 1 ´ βn intended power (Definition 3). Recall that the replication probability for original

study px, σ, θq is equal to

RP
`

x, θ, σrpx, σ, β
n
q
˘

“ P

˜

|Xr|

σrpx, βnq
ě 1.96, signpXrq “ signpxq

¸

(11)

To provide intuition of the properties, Figure A1 provides an illustration of the replication

probability function for different values of x under the common power rule for 1 ´ βn “ 0.9

and a fixed value of θ.

Lemma A1 (Properties of the replication probability function). The replication probability

function satisfies the following properties:

1. For any replication standard error σrpx, σ, β
nq, the replication probability for an original

study px, σ, θq can be written compactly as

RP
`

x, θ, σrpx, σ, β
n
q
˘

“ 1 ´ Φ

ˆ

1.96 ´ signpxq
θ

σrpx, σ, βnq

˙

(12)

The remaining properties assume the replication standard error σrpx, β
nq is set using the

common power rule in Definition 3 with intended power 1 ´ βn:

2. If 1 ´ βn ą 0.025, then RP
`

x, θ, σrpx, β
nq

˘

is strictly decreasing in x over p´8, 0q and

p0,8q.

3. If p1 ´ βnq ą 0.6628, then RP
`

x, θ, σrpx, β
nq

˘

is strictly concave with respect to x over

the open interval pmax t0, r1 ´ r˚pβnqsθu, r1 ` r˚pβnqsθq, where

r˚
pβn

q “ ´
`

2 ` 1.96.hpβn
q
˘

`

d

`

2 ` 1.96.hpβnq
˘2

´ 4 ˆ p1 ` 1.96.hpβnq ´ hpβnq2
˘

2
ą 0

(13)

with hpβnq “
`

1.96 ´ Φ´1pβnq
˘

.
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4. The limits of the replication probability function with respect to x are

lim
xÑ8

RP
`

x, θ, σrpx, β
n
q
˘

“ 0.025 and lim
xÑ´8

RP
`

x, θ, σrpx, β
n
q
˘

“ 0.025 (14)

lim
xÒ0

RP
`

x, θ, σrpx, β
n
q
˘

“ 0 and lim
xÓ0

RP
`

x, θ, σrpx, β
n
q
˘

“ 1 (15)

5. Suppose X˚ „ Npθ, σ2q. Then E
“

RP
`

X, θ, σrpX, β
nq

˘‰

Ñ 1 ´ βn as θ Ñ 8 for fixed σ.

Figure A1. Example of the replication probability function under the common power rule with intended power
p1 ´ βnq “ 0.9. The two vertical lines around θ marks the open interval over which the replication probability
function is strictly concave, where r˚ is given by equation (13).

Proof of 1. The probability in equation (11) equals
“

1px{σ ě 1.96q ˆ
`

1 ´ Φ
`

1.96 ´ θ
σr

˘‰

`
“

1px{σ ď ´1.96q ˆ Φ
`

´ 1.96 ´ θ
σr

˘‰

. This captures the two requirements for ‘successful’

replication: the replication estimate must attain statistical significance and have the same

sign as the original estimate. Equation (12) is obtained using the symmetry of the normal

distribution, which implies that Φptq “ 1 ´ Φp´tq for any t. ˝

Proof of 2. The first derivative of the replication probability function with the common power

rule is
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BRP
`

x, θ, σrpx, β
nq

˘

Bx
“

$

&

%

´ θ
x2

`

1.96 ´ Φ´1pβnq
˘

ˆ ϕ
´

1.96 ´ θ
x

`

1.96 ´ Φ´1pβnq
˘

¯

, x ą 0

´ θ
x2

`

1.96 ´ Φ´1pβnq
˘

ˆ ϕ
´

´ 1.96 ´ θ
|x|

`

1.96 ´ Φ´1pβnq
˘

¯

, x ă 0

(16)

These are strictly negative whenever
`

1.96 ´ Φ´1pβnq
˘

ą 0 ðñ p1 ´ βnq ą 0.025. ˝

Proof of 3. First, note that for x ą 0, the second derivative of the replication probability

function with the common power rule is

B2RP
`

x, θ, σrpx, β
nq

˘

Bx2
“

ˆ

hpβnqθ

x3

˙

ϕ

ˆ

1.96´
hpβnqθ

x

˙

«

1`

ˆ

hpβnqθ

x

˙ˆ

1.96´
hpβnqθ

x

˙

ff

(17)

Let x “ p1 ` rqθ. Substituting this into the previous equation and simplifying shows that

equation (17) is strictly negative when the following inequality is satisfied

r2 `
`

2 ` 1.96hpβn
q
˘

.r `
`

1 ` 1.96hpβn
q ´ hpβn

q
2
˘

ă 0 (18)

The solution to the quadratic equation has a unique positive solution r˚pβnq whenever

p1 ´ βnq ą 0.6628. To see this, note that there exists a unique positive solution when
`

1 `

1.96hpβnq ´ hpβnq2
˘

ă 0. This quadratic equation in hpβnq must have a unique positive and

negative solution in turn, since the parabola opens downwards and equals 1 when hpβnq “ 0.

The positive root can be obtained from the quadratic formula, which gives 2.38014. Since

the quadratic function opens downward, this implies that for any hpβnq ą 2.38014, we have
`

1`1.96hpβnq´hpβnq2
˘

ă 0. Thus, a unique positive solution to equation (18) exists whenever

this condition is satisfied. In particular, a unique positive solution exists whenever

hpβn
q “ 1.96 ´ Φ´1

pβn
q ą 2.38014

ðñ Φp1.96 ´ 2.38014q ą βn

ðñ p1 ´ βn
q ą 0.6628 (19)

The unique positive solution for equation (18) can again be obtained by the quadratic

formula, which gives equation (13). Note that for any r ą 0 where the inequality for concavity

in equation (18) is satisfied, the same must also be true of ´r, since it makes the left-hand-side

strictly smaller. This implies that the replication probability function is strictly concave (since

its second derivative is strict negative) over pmax t0, r1 ´ r˚pβnqsθu, r1 ` r˚pβnqsθq, where the
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maximum is taken because the replication probability function is discontinuous at 0. This

follows because of the properties of the quadratic function. Specifically, suppose fpxq is a

parabola that opens upward and intersects the y-axis at a negative value. Then for any two

points pa, bq with a ă b and fpaq, fpbq ă 0, it must be that fpcq ă 0 for any c P pa, bq. ˝

Proof of 4. Substituting the common power rule into the replication probability function gives

RP
`

x, θ, σrpx, β
n
q
˘

“ 1 ´ Φ

ˆ

1.96 ´
θ

x

`

1.96 ´ Φ´1
pβn

q
˘

˙

(20)

The values of the limits can be seen immediately from this expression. ˝

Proof of 5. This proof consists of two steps. In the first step, I show that the replication

probability function approaches linearity in x in an even interval around θ, as θ Ñ 8 for fixed

σ. To see this, fix r P p0, 1q. Then the second derivative evaluated at any point cθ P
`

rθ, p1`rqθ
˘

equals

B2RP
`

x, θ, σrpx, βnq
˘

Bx2

ˇ

ˇ

ˇ

ˇ

ˇ

x“cθ

“

ˆ

hpβnq

c3θ2

˙

ϕ

ˆ

1.96 ´
hpβnq

c

˙

«

1 `

ˆ

hpβnq

c

˙ˆ

1.96 ´
hpβnq

c

˙

ff

(21)

This approaches zero as θ Ñ 8, which implies that RP
`

x, θ, σrpx, β
nq

˘

approaches linearity

in x over the interval
`

rθ, p1 ` rqθ
˘

in the limit.

For the second step, see that as θ Ñ 8 with fixed σ, we have that

P
“

X˚
P

`

rθ, p1 ` rqθ
˘

|θ, σ
‰

“ Φ

ˆ

p1 ` rqθ ´ θ

σ

˙

´ Φ

ˆ

rθ ´ θ

σ

˙

Ñ 1 (22)

That is, the probability of drawing X˚ inside of the range
`

rθ, p1 ` rqθ
˘

approaches one in

the limit. But from the first step we know that the replication probability function is linear

over this range as θ Ñ 8 with fixed σ. This implies in the limit that E
“

RP
`

X, θ, σrpX, β
nq

˘‰

“

RP
`

ErXs, θ, σrpX, β
nq

˘

“ RP
`

θ, θ, σrpX, β
nq

˘

“ 1 ´ βn, as shown in Lemma 1 in the main

text.
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B. Proofs of Propositions

Proposition B1. Let gpq be a function of X,Σ, Xr, β
n. Then E

“

gpX,Σ, Xr, β
nq|R “ 1, SX “

1
‰

depends on the probability probability of publishing significant results, psigpq, and does not

depend on the probability of publishing insignificant results, pinsigpq.

Proof. We can write E
“

gpX,Σ, Xr, β
nq|R “ 1, SX “ 1

‰

as

ż

gpx, σ, xr, β
nqf

X˚,Σ˚,Θ˚,Xr |D,R,S˚
X

´

x, σ, θ, xr

ˇ

ˇD “ 1, R “ 1, SX˚ “ 1
¯

dxdσdθdxr

“

ż

x,σ,θ

˜

ż

xr

gpx, σ, xr, β
nqfXr |X˚,Σ˚,Θ˚

´

xr|θ, σrpx, σ, βnq

¯

dxr

¸

f
X˚,Σ˚,Θ˚|D,R,S˚

X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

dxdσdθ

(23)

The equality uses fXr|X˚,Σ˚,Θ˚,D,R,S˚
X

`

xr|θ, σrpx, σ, β
nq

˘

“ fXr|X˚,Σ˚,Θ˚

`

xr|θ, σrpx, σ, β
nq

˘

.

Replication estimates are not subject to selective publication, which implies this is a normal

density that does not depend on ppq. Hence, the term in parentheses can only be affected

by ppq indirectly through fX˚,Σ˚,Θ˚|D,R,S˚
X
, which is the joint distribution of original studies

conditional on being published, chosen for replication, and statistically significant at the 5%

level. However, this distribution does not depend on the probability of publishing insignificant

findings. To see this, apply Bayes rule twice to get

fX˚,Σ˚,Θ˚|D,R,S˚
X

`

x, σ, θ|D “ 1, R “ 1, S˚
X “ 1

˘

“
P

´

D “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ,R “ 1, S˚
X “ 1

¯

P

´

D “ 1
ˇ

ˇR “ 1, S˚
X “ 1

¯ ˆ
P

´

R “ 1
ˇ

ˇX˚ “ x,Σ˚ “ σ,Θ˚ “ θ, S˚
X “ 1

¯

P

´

R “ 1
ˇ

ˇS˚
X “ 1

¯

ˆfX˚,Θ,Σ˚|S˚
X

´

x, θ, σ
ˇ

ˇS˚
X “ 1

¯

“
psigpx{σq

E
`

psigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨
rsigpx{σq

E
`

rsigpX˚{Σ˚q
ˇ

ˇS˚
X “ 1

˘ ¨ fX˚,Σ˚,Θ˚|S˚
X

´

θ, x, σ
ˇ

ˇS˚
X “ 1

¯

(24)

In the final line, the first factor in the product includes only psigpq; the denominator does not

condition on R because replication selection is assumed to be random for significant findings.

The second factor equals one because replication selection for significant results is assumed

to be random. The final factor in the product is the density of latent studies conditional on

significance, which is not affected by selective publication.

Proposition B2 (Regression to the mean in replications). Suppose psigpq is symmetric about

zero, non-zero, differentiable and weakly increasing in absolute value. Allow pinsigpq to take any

form. Published original estimates X and corresponding replication estimates Xr satisfy
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E
“

X
ˇ

ˇΘ “ θ, SX “ 1
‰

ą θ “ E
“

Xr|Θ “ θ
‰

(25)

Proof. We have E
`

Xr

ˇ

ˇΘ “ θ
˘

“ θ by assumption. Next, note that

EX˚|Θ˚,S˚
X ,D

´

X˚
|Θ˚

“ θ, |X˚
{Σ˚

| ě 1.96, D “ 1
¯

“ EX|Θ,SX

´

X|Θ “ θ, |X{Σ| ě 1.96
¯

“ EΣ|Θ,SX

˜

EX|Θ,Σ,SX

´

X|Θ “ θ,Σ “ σ, |X{σ| ě 1.96
¯

¸

(26)

where the last line uses the Law of Iterated Expectations. We will prove EX|Θ,Σ,S˚
X

`

X|Θ “

θ,Σ “ σ, |X{σ| ě 1.96
˘

ą θ, which implies that equation (26) is also greater than θ. Recall

that X|θ, σ is the effect size of published studies and follows a truncated normal distribution:

p
`

x
σ

˘

1
σ
ϕ

`

x´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

ş

p
`

x1

σ

˘

1
σ
ϕ

`

x1´θ
σ

˘

1
`

|x
σ

| ě 1.96
˘

dx1
(27)

Define X “ θ ` σZ. Then the density for the transformed random variable Z is

p
`

z ` θ
σ

˘

ϕ
`

z
˘

1
`

|z ` θ
σ

| ě 1.96
˘

ş

p
`

z1 ` θ
σ

˘

ϕ
`

z1
˘

1
`

|z ` θ
σ

| ě 1.96
˘

dz1
(28)

For notational convenience, define the following normalization constants:

η̄ “ PpX ď ´1.96σq `PpX ě 1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

`P

ˆ

Z ě 1.96 ´
θ

σ

˙

(29)

η1 “ PpX ď ´1.96σq “ P

ˆ

Z ď ´1.96 ´
θ

σ

˙

(30)

η2 “ PpX ě 2θ ` 1.96σq “ P

ˆ

Z ě
θ

σ
` 1.96

˙

(31)

η3 “ Pp1.96σ ď X ď 2θ ´ 1.96σq “ P

ˆ

1.96 ´
θ

σ
ď Z ď

θ

σ
´ 1.96

˙

(32)

Case 1. Consider two cases. First, suppose θ P p0, 1.96σq. Conditional on pθ, σ) (where

we suppress the conditional notation on pθ, σq for clarity), the expected value of a published

estimate conditional of statistical significance is
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EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

`
`

η̄ ´ η1 ´ η2
˘

EpX|1.96σ ď X ď 2θ ` 1.96σq

¸

(33)

First note that EpX|1.96σ ď X ď 2θ ` 1.96σq ą θ since we assume that θ P p0, 1.96σq and

psigpq ą 0. If η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě
`

η1 ` η2
˘

θ, it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. Consider the first expectation in this

expression:

EpX|X ď ´1.96σq “ E

´

θ ` σZ|Z ď ´1.96 ´
θ

σ

¯

“ θ ` σE
´

Z|Z ď ´1.96 ´
θ

σ

¯

(34)

Evaluating the expectation in the right-hand-side of equation (34) gives

E

´

Z|Z ď ´1.96´
θ

σ

¯

“
1

η1

ż ´1.96´ θ
σ

´8

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz “ ´
1

η1

ż ´1.96´ θ
σ

´8

psig

ˆ

z `
θ

σ

˙

ϕ1
pzqdz

“ ´
1

η1

«

psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

´ psigp´8qϕp´8q ´

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz

ff

“ ´
1

η1
psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

`
1

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz (35)

where the second equality uses ϕ1pzq “ ´zϕpzq; the third equality uses integration by parts;

and the final equality follows because psigp´8qϕp´8q “ 0 since psigpq is bounded between zero

and one. Substituting this into equation (34) gives

EpX|X ď ´1.96σq “ θ´
σ

η1
psigp´1.96qϕ

ˆ

´1.96´
θ

σ

˙

`
σ

η1

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z`
θ

σ

˙

ϕpzqdz (36)

Next, note that

EpX|X ě 2θ ` 1.96σq “ θ ` σE
´

Z|Z ď
θ

σ
` 1.96

¯

(37)

where
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E

´

Z|Z ď
θ

σ
` 1.96

¯

“
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z `
θ

σ

˙

ϕpzqdz ě
1

η2

ż 8

1.96` θ
σ

zpsig

ˆ

z ´
θ

σ

˙

ϕpzqdz (38)

since psigpz` θ{σq ě psigpz´ θ{σq for all z P p1.96` θ{σ,8q because psigptq is weakly increasing

over t ą 1.96. For the right-hand-side of this equation, we can apply similar arguments used

to derive equation (35). Substituting the result into equation (37) gives

EpX|X ě 2θ ` 1.96σq ě θ `
σ

η2
psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

`
σ

η2

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz (39)

Equations (36) and (39) imply

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq

ě pη1 ` η2qθ ` σ

«

psigp1.96qϕ

ˆ

1.96 `
θ

σ

˙

´ psigp´1.96qϕ

ˆ

´ 1.96 ´
θ

σ

˙

ff

` σ

«

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz `

ż 8

1.96` θ
σ

p1
sig

ˆ

z ´
θ

σ

˙

ϕpzqdz

ff

“ pη1 ` η2qθ (40)

In the second line, the second term in the sum equals zero because symmetry of psigpq and

ϕpq about zero implies that both terms in the brackets are equal. To see why the third term in

the sum equals zero, note that

ż ´1.96´ θ
σ

´8

p1
sig

ˆ

z `
θ

σ

˙

ϕpzqdz “

ż 8

1.96` θ
σ

p1
sig

ˆ

´ u `
θ

σ

˙

ϕpuqdu “ ´

ż 8

1.96` θ
σ

p1
sig

ˆ

u ´
θ

σ

˙

ϕpuqdu

(41)

The first equality follows from both changing the order of the integral limits and applying

the substitution u “ ´x; it also uses the symmetry of ϕpq. The final equality holds because

symmetry of psigpq about zero implies that for any t ą 1.96, p1
sigptq “ ´p1

sigp´tq.

Case 2. Consider the second case where θ ě 1.96σ. For a given pθ, σq, we have

EpX|1.96σ ď |X|q “
1

η̄

˜

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq
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η3EpX|1.96σ ď X ď 2θ ´ 1.96σq `
`

η̄ ´ η1 ´ η2 ´ η3
˘

EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq

¸

ą
1

η̄

˜

θpη1 ` η2q `
`

η̄ ´ η1 ´ η2 ´ η3
˘

θ ` η3EpX|1.96σ ď X ď 2θ ´ 1.96σq

¸

(42)

The inequality follows from two facts. First, the inequality proved in the first case:

η1EpX|X ď ´1.96σq ` η2EpX|X ě 2θ ` 1.96σq ě pη1 ` η2qθ. Second, the expectation

in the third term of the sum satisfies EpX|2θ ´ 1.96σ ď X ď 2θ ` 1.96σq ą θ because

θ ě 1.96σ ðñ 2θ ´ 1.96σ ě θ and we assume that psigpq ą 0.

It remains to show that EpX|1.96σ ď X ď 2θ ´ 1.96σq ě θ. Then it follows that

EpX|1.96σ ď |X|q ą θ, which is what we want to show. First, note that

EpX|1.96σ ď X ď 2θ ´ 1.96σq “ θ ` σE

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´
θ

σ
ď Z ď ´1.96 `

θ

σ

˙

(43)

It is therefore sufficient to show that E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96 ´ θ
σ

ď Z ď ´1.96 ` θ
σ

˙

ě 0. Writing out

the expectation in full gives

E

ˆ

Z

ˇ

ˇ

ˇ

ˇ

1.96´
θ

σ
ď Z ď ´1.96`

θ

σ

˙

“
1

η3

˜

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz`

ż θ
σ

´1.96

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz

¸

“
1

η3

˜

ż θ
σ

´1.96

0

z

„

psig

ˆ

z `
θ

σ

˙

´ psig

ˆ

´ z `
θ

σ

˙ȷ

ϕpzqdz

¸

ě 0 (44)

The second equality follows because

ż 0

1.96´ θ
σ

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż 1.96´ θ
σ

0

zpsig

ˆ

z`
θ

σ

˙

ϕpzqdz “ ´

ż θ
σ

´1.96

0

upsig

ˆ

´u`
θ

σ

˙

ϕpuqdu

(45)

which uses the substitution u “ ´x and the symmetry of ϕpq. The weak inequality in equation

(44) follows because psigpq is assumed to be weakly increasing over positive values. Thus,

z ´ θ{σ ą ´z ` θ{σ for all z P p0, θ{σ ´ 1.96q implies psig
`

z ` θ{σ
˘

´ psig
`

´ z ` θσ
˘

ě 0.

This covers all cases and proves the proposition.

Proof of Proposition 1: This follows immediately from the more general result in Proposition

B1 with gpx, σ, xr, β
nq “ 1

”

|xr|

σrpx,σ,βnq
ě 1.96, signpxrq “ signpxq

ı

.

Proof of Proposition 2: For notational convenience, let pXsig,Σsig,Θsigq denote the distri-

bution of latent studies pX˚,Σ˚,Θ˚q conditional on being published pD “ 1q and statistically
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significant p|X˚{Σ˚| ě 1.96q. The expected replication probability (Definition 2) under the

common power rule (Definition 3) can be written as

EX˚,Σ˚,Θ˚|D,R,S˚
X

”

RP
´

X˚,Θ˚, σrpX
˚, βn

q

¯
ˇ

ˇ

ˇ
D “ 1, R “ 1, |X˚

{Σ˚
| ě 1.96

ı

“ EX,Σ,Θ|SX

”

RP
`

X,Θ, σrpX,Σ, β
n
q
˘ˇ

ˇ|X{Σ| ě 1.96
ı

“ EXsig ,Σsig ,Θsig

”

RP
´

Xsig,Θsig, σrpXsig, β
n
q

¯ı

“ EΣsig ,Θsig

«

EXsig |Σsig ,Θsig

”

RP
´

Xsig,Θsig, σrpXsig, β
n
q

¯

|Θsig “ θ,Σsig “ σ
ı

ff

(46)

where the second inequality drops the conditioning on being chosen for replication (R) because

it is assumed that replication selection on significant results is random; and the last equality uses

the Law of Iterated Expectations. The proof shows that the conditional expected replication

probability satisfies EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, β
nq

˘

|Θsig “ θ,Σsig “ σ
‰

ă 1 ´ βn

which implies that the expected replication probability is also less than intended power

1 ´ βn. For greater clarity in what follows, let E
“

RP
`

Xsig|θ, σ, βnq
‰

be shorthand for

EXsig |Σsig ,Θsig

“

RP
`

Xsig,Θsig, σrpXsig, β
nq

˘

|Θsig “ θ,Σsig “ σ
‰

.
Note that the conditional expected replication probability can be written explicitly as

E
“

RP
`

Xsig|θ, σ, βnq
‰

“

ż
ˆ

1 ´ Φ

ˆ

1.96 ´
θ

x

`

1.96 ´ Φ´1pβnq
˘

˙ p
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx

ş

x1 p
`

x1

σ q 1
σϕ

´

x1´θ
σ

¯

1
`

| xσ | ě 1.96
˘

dx1
(47)

where the integrand in equation (47) is obtained using the compact notation for the replication

probability derived in Lemma A1.1 and then substituting the common power rule in Definition

3. The pdf of estimates differs from a normal distribution in two respects: (1) the publica-

tion probability function p
`

x
σ

˘

reweights the distribution; and (2) conditioning on statistical

significance truncates original effects falling in the insignificant region p´1.96σ, 1.96σq. The

denominator is the normalization constant.

First, we introduce some notation. Lemma A1.3 shows that if p1 ´ βnq ą 0.6628, then

RP
`

x, |θ, σ, βn
˘

is strictly concave over the open interval pmax t0, r1 ´ r˚pβnqsθu, r1`r˚pβnqsθq,

where r˚pβnq is given by equation (13). This Proposition assumes p1 ´ βnq ą 0.8314, so the

condition is satisfied. To simplify the notation, define pl˚, u˚q “
`

p1 ´ r˚qθ, p1 ` r˚q
˘

when

r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

when r˚ ě 1; in both cases, the replication probability

function is strictly concave over an interval with mid-point θ.

Consider first the case where r˚ ě 1 so that pl˚, u˚q “
`

0, 2θ
˘

. The conditional replication

probability can be expressed as a weighted sum
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E

”

`

RP
`

Xsig|θ, σ, βn
˘

ı

“ P

´

Xsig ă l˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
Xsig ă l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
Xsig ą u˚

ı

ă P

´

Xsig ă l˚
¯

0.025`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ą u˚
¯

`

1´βn
˘

(48)

In the last line, the first term in the sum uses the fact that the maximum value of the

replication probability when x ă l˚ “ 0 is 0.025 (Lemma A1.2 and Lemma A1.4 in Appendix

A). The third term follows because RP
`

2θ|θ, σ, βn
˘

is the maximum value the function takes

over x ą u˚ “ 2θ, since the function is strictly decreasing over x ą 0 (Lemma A1.2); and

therefore that RP
`

2θ|θ, σ, βn
˘

ă RP
`

θ|θ, σ, βn
˘

“ 1 ´ βn, where the equality is shown in

Lemma 1. From equation (48), we can see that E
“

RP pXsig|θ, σ, βnq|l˚ ď Xsig ď u˚
‰

ă 1 ´ βn

is a sufficient condition for E
“

RP
`

Xsig|θ, σ, βnq
‰

ă 1 ´ βn.

Before showing that this sufficient condition is satisfied, we show that the same sufficient

condition holds in the second case, where r˚ P p0, 1q so that pl˚, u˚q “
`

p1´r˚qθ, p1`r˚qθ
˘

. This

requires additional steps. First, express the conditional replication probability as a weighted

sum

E

”

`

RP
`

Xsig|θ, σ, βn
˘

ı

“ P

´

Xsig ď l˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
Xsig ď l˚

ı

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
Xsig ě u˚

ı

ă P

´

Xsig ď l˚
¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

`P

´

Xsig ě u˚
¯

RP
´

u˚|θ, σ, βn
¯

(49)

The strict inequality follows for two reasons. For the first term in the sum, one is the

maximum value the function can take for any x. For the third term, RP pu˚|θ, σ, βnq is the

function’s maximum value over x ě u˚, since the integrand is strictly decreasing over positive

values (Lemma A1.2). With an additional step, we can write this inequality as

E

”

`

RP
`

Xsig|θ, σ, βn
˘

ı

ă
1

2

´

1 ´P

´

l˚ ď Xsig ď u˚
¯¯´

1 ` RP
`

u˚
ˇ

ˇθ, σ, βn
˘

¯

`P

´

l˚ ď Xsig ď u˚
¯

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(50)

This follows because PpXsig ď l˚q ď PpXsig ě u˚q and RP pu˚|θ, σ, βnq ă 1.

That is, increasing the relative weight on the maximum value of one, such that both

tails are equally weighted, must lead to a (weakly) larger value. The weak inequality

PpXsig ď l˚q ď PpXsig ě u˚q required for this simplification is shown below:

Lemma B1. Suppose X|θ, σ follows the truncated normal pdf in equation (47). Then for any
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r˚ P p0, 1q, the following inequality holds: P
`

Xsig ď p1 ´ r˚qθ
˘

ă P
`

Xsig ě p1 ` r˚qθ
˘

.

Proof. First, note that
`

p1 ´ r˚qθ, p1 ` r˚qθ
˘

is an interval over the positive real line centered

at θ. Consider two cases:

Case 1: Let p1 ´ r˚qθ ď 1.96σ. Define the normalization constant C “
ş

x1 p
`

x1

σ
q 1
σ
ϕ

´

x1´θ
σ

¯

1
`

|x
σ

| ě 1.96
˘

dx1. Then

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 ď
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1`
1

C

ż 2θ`1.96σ

max t1.96σ,p1`r˚qθu

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1`r˚qθ
¯

(51)

Consider the weak inequality. Note that the mid-point between ´1.96σ and 2θ`1.96σ is θ.

Thus, with no selective publication (i.e. pptq “ 1 for all t), we would have equality owing to the

symmetry of the normal distribution. However, recall that psigpq is symmetric about zero and

weakly increasing in absolute value. It follows therefore that |2θ ` 1.96σ| ą | ´ 1.96σ| implies

psigp|2θ ` 1.96σ|q ě psigp| ´ 1.96σ|q; using this fact and symmetry of the normal distribution

about θ gives the weak inequality. The strict inequality follows because the additional term is

strictly positive, since psigpq is assumed to be non-zero.

Case 2: Let p1 ´ r˚qθ ą 1.96σ. The argument is similar to the first case:

P

´

Xsig ď p1 ´ r˚qθ
¯

“
1

C

ż ´1.96σ

´8

psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż p1´r˚qθ

1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

ă
1

C

ż 8

2θ`1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 `
1

C

ż 2θ´1.96σ

p1`r˚qθ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1

`
1

C

ż 2θ`1.96σ

2θ´1.96σ
psig

ˆ

x

σ

˙

1

σ
ϕ

ˆ

x´ θ

σ

˙

dx1 “ P

´

Xsig ě p1 ` r˚qθ
¯

(52)

The inequality in equation (50) can be further simplified by placing restrictions on intended

power. In particular, if intended power satisfies 1 ´ βn ě 0.8314, then

E

”

`

RP
`

Xsig|θ, σ, βn
˘

ı

ă

´

1 ´P
`

l˚ ď Xsig ď u˚
˘

¯

`

1 ´ βn
˘

`P
`

l˚ ď Xsig ď u˚
˘

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

(53)
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This follows because with u˚ “ p1 ` r˚qθ, we have

1

2

´

1 ` RP
`

u˚
ˇ

ˇθ, σ, βn
˘

¯

“
1

2

˜

1 `

˜

1 ´ Φ

˜

1.96 ´
1.96 ´ Φ´1pβnq

1 ` r˚pβnq

¸¸

ď 1 ´ βn
ðñ 1 ´ βn

ě 0.8314 (54)

From equation (53), we can see that E
“

RP pXsig|θ, σ, βnq
ˇ

ˇl˚ ď Xsig ď u˚
‰

ă 1 ´ βn is

a sufficient condition for E
“

RP pXsig|θ, σ, βnq
‰

ă 1 ´ βn. Thus, in both cases, the sufficient

condition for the desired result is the same.

This sufficient condition is shown in two steps. In the first, I show that this inequality

holds even in the case where there is no selective publication and all published results are

replicated (i.e. when X „ NpΘ,Σ2q). In the second, I show that this inequality remains true

once we allow for selective publication and truncation of the distribution due to conditioning

on statistical significance.

Lemma B2 states the first intermediate step. Its implications are of independent interest

and discussed in the main text. It shows that even in the optimistic scenario where original

estimates are unbiased, there is no selective publication, and all results are published and

replicated, that the expected replication probability still falls below intended power.

Lemma B2. Let published effects be distributed according to X|θ, σ „ Npθ, σ2q. Suppose

pptq “ 1 and rptq “ 1 for all t P R. Assume all results are included in the replication rate

calculation. Let power in replications is set according to the common power rule with intended

power 1 ´ βn ě 0.8314. Then E
“

RP pX|θ, σ, βn
˘‰

ă 1 ´ βn.

Proof. Recall that RP px|θ, σ, βnq is strictly concave with respect to x over the interval pl˚, u˚q,

where pl˚, u˚q “
`

p1 ´ r˚qθ, p1 ` r˚q
˘

when r˚ P p0, 1q and pl˚, u˚q “
`

0, 2θ
˘

; in both cases, the

mid-point of the interval is θ. We have that

E

”

RP
`

X|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď X ď u˚

ı

“

ż u˚

l˚

RP
`

x|θ, σ, βn
˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

l˚
1
σϕ

´

x1´θ
σ

¯

dx1
ă RP

´

θ
ˇ

ˇ

ˇ
θ, σ, βn

˘

¯

“ 1 ´ βn

(55)

where the strict inequality follows from Jensen’s inequality and the fact that ErX|l˚ ď X ď

u˚s “ θ. The final equality is a property of the replication probability function shown in Lemma

1. This is the sufficient condition required for the desired result.

Note that the inequalities in equations (50) (for when r˚ ě 1q and (53) (for when r˚ P p0, 1q)

were derived under more general conditions, where the normal distribution may we reweighted
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by ppq and truncated based on significance. This setting is a special case with no selective

publication (i.e. pptq “ 1 for all t), and no truncation such that all results are included in the

replication rate irrespective of statistical significance.

The same conclusions hold when we introduce selective publication (which reweights the

normal distribution) and condition on statistical significance (which truncates the ‘insignifi-

cant’ regions of the density). Consider three cases. First, suppose that u˚ ď 1.96σ. Then

E
`

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

˘

“ 0 ă 1 ´ βn because of truncation. Second, suppose

that l˚ ě 1.96σ. Then

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

l˚

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
psig

`

x
σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

ď

ż u˚

l˚

RP
`

x|θ, σ, βn
˘

1
σ
ϕ

´

x´θ
σ

¯

dx

şu˚

l˚
1
σ
ϕ

´

x1´θ
σ

¯

dx1

ă RP
´

θ
ˇ

ˇ

ˇ
θ, σ, βn

˘

¯

“ 1 ´ βn (56)

Note that the distribution is invariant to the scale of psigpq. Consider first the weak inequal-

ity. This follows because psigpq is assumed to be weakly increasing over pl˚, u˚q. When it is a

constant function over the interval, the equality holds. If psigpx{σq ą 0 for some x P pl˚, u˚q

then the function redistributes weight to larger values of x. Since RP px|θ, σ, βnq is strictly

decreasing over positive values of x (Lemma A1.2), placing higher relative weight on lower

values implies that the weak inequality becomes strict. As in the proof to Lemma B2, the strict

inequality follows from Jensen’s inequality, since RP px|θ, σ, βnq is strictly concave over pl˚, u˚q,

and the fact that the expected value of X over this interval is equal to the true value θ. The

last equality follows from Lemma 1 in the text.

Finally, consider the case where l˚ ă 1.96σ ă u˚. Then

E

”

RP
`

Xsig|θ, σ, βn
˘

ˇ

ˇ

ˇ
l˚ ď Xsig ď u˚

ı

“

ż u˚

1.96σ

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1
`p1´ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, βn
˘

psig
`

x
σ

˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
psig

`

x1

σ

˘

1
σϕ

´

x1´θ
σ

¯

dx1

Institute for Replication I4R DP No. 3

47



46

“ ω

ż 2θ´1.96σ

1.96σ

RP
`

x|θ, σ, βn
˘

1
σϕ

´

x´θ
σ

¯

dx

ş2θ´1.96σ

1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1
` p1 ´ ωq

ż u˚

2θ´1.96σ

RP
`

x|θ, σ, βn
˘

1
σϕ

´

x´θ
σ

¯

dx

şu˚

2θ´1.96σ
1
σϕ

´

x1´θ
σ

¯

dx1

ă ωRP
´

θ
ˇ

ˇ

ˇ
θ, σ, βn

˘

¯

` p1 ´ ωq.RP
´

2θ ´ 1.96σ
ˇ

ˇ

ˇ
θ, σ, βn

˘

¯

ă 1 ´ βn (57)

with

ω “

ş2θ´1.96σ

1.96σ
psig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

şu˚

1.96σ
psig

`

x1

σ

˘

1
σ
ϕ

´

x1´θ
σ

¯

dx1

(58)

The second row simply breaks up the integral. The third row rearranges the sum so that

the conditional expectation of the replication probability appears in both terms. The third line

follows because, as in the previous case, the psig function redistributes weight to large values

of x and hence lower values of RP px|θ, σ, βnq. In the last line, the first term uses the concavity

of RP px|θ, σ, βnq over p1.96σ, 2θ ´ 1.96σq Ă pl˚, u˚q, Jensen’s inequality, and the fact that the

expected value of X over this interval is equal to θ. The second term follows because 2θ´1.96σ

is the maximum value the function can take because RP px|θ, σ, βnq is strictly decreasing in x

over positive values. The final inequality follows because RP
`

θ
ˇ

ˇθ, σ, βn
˘˘

“ 1 ´ βn (Lemma

1) and RP
`

2θ ´ 1.96σ
ˇ

ˇθ, σ, βn
˘˘

ă 1 ´ βn because 2θ ´ 1.96σ ą θ and the function is strictly

decreasing over positive values.

This covers all cases, proving the proposition.

C. Selective Publication Above 1.96 and the Replication Rate

Proposition 1 shows that the replication rate does not depend on the probability of publishing

insignificant results relative to significant results. However, it may vary with changes in psigpq

i.e when the absolute value of the t-ratio is above 1.96. This section presents a simple example

showing how the replication rate varies with the relative probability of publishing ‘moderately

significant’ results to ‘highly significant’ results.

Suppose that the probability function ppq is a stepwise function that distinguishes between

insignificant findings, moderately statistically significant findings, and highly statistically sig-

nificant findings. Specifically, let κ ą 1.96 be a value such that |z| P p1.96, κq is defined as

moderately significant and |z| ą κ as highly significant. Let βp1 refer to the constant prob-

ability of publishing insignificant findings, and βp2 to the constant probability of publishing

moderately significant findings. Both these probabilities are defined relative to the probability

of publishing a highly significant finding, which we normalize to 1 (since only the ratio of prob-

abilities are identified). The top-left panel of Figure C1 provides an illustration with κ “ 3,

βp2 “ 0.7 and βp1 “ 0.2.

The top-right panel of Figure C1 shows how the replication rate in economics experiments
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varies with βp2. The results show that as βp2 decreases – that is, as highly significant results

become more favoured for publication relative to moderately significant results – the replication

rate increases. The size of the changes in the replication rate as we vary βp2 can be relatively

large, increasing, for example, by more than 10 percentage points when we move from βp2 “ 1

to βp2 “ 0.

Figure C1. The replication rate, true effect, and bias changing the probability of publishing moderately
significant results relative to highly significant results (βp2). Results are based on estimated parameters for
economics experiments in Table 1, setting κ “ 3 and varying βp2. Power in replication studies is set detect the
original estimate with 92% power. The top left panel is an illustration of a stepwise publication probability
function which distinguishes between insignificant findings z P p´1.96.1.96q, moderately statistically significant
findings |z| ě 1.96 and |z| ď 3, and highly statistically significant findings |z| ą 3. The top-right panel shows
the replication rate, which is defined as the share of significant results that obtain a statistically significant
results with the same sign in replication. The bottom-left panel plots the expected true value of published
results and the bottom-right mean bias.
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The intuition is that increasing the relative probability of publishing highly significant re-

sults compared to moderately significant results (i.e. decreasing βp2) has the effect of increasing

the mean true effect in original published studies (bottom-left panel of Figure C1. All else equal,

increasing the mean true effect will increase power, and therefore the replication rate. This is

because the larger the true effect, the smaller is the bias of the original estimate (bottom-right

panel of Figure C1). Power will therefore increase with larger true effects based on the rule.

While this may be counter-intuitive from the perspective of selective publication – if we think

of favouring highly significant results over moderately significant results as a ‘worsening’ of

selective publication – it is in fact very similar to what Benjamin et al. (2018) propose for

setting a new standard of statistical significance for novel findings at p ă 0.005. McShane et

al. (2019) provide arguments against this proposal.

D. Replication Selection in Empirical Applications

Replication selection is a multi-step mechanism that first selects studies, and then selects results

within those studies to replicate (since studies typically report multiple results). It consists of

three steps:

1. Eligibility: define the set of eligible studies (e.g. journals, time-frame, study designs).

2. Study selection: on the set of eligible studies, a mechanism that select which studies

will be included in the replication study.

3. Within-study replication selection: for selected studies, a mechanism for selecting

which result(s) to replicate.

These three features of the replication selection mechanism determine: (i) the latent

distribution estimated in the empirical exercise; and (ii) the interpretation of the selection

parameters pβp1, βp2, βp3q.

Economics experiments.—Consider these three steps in Camerer et al. (2016):

1. Eligibility: Between-study laboratory experiments in American Economic Review and

Quarterly Journal of Economics published between 2011 and 2014.

2. Study selection: Camerer et al. (2016) select for publication all eligible studies that

had ‘at least one significant between subject treatment effect that was referred to as

statistically significant in the paper.’ Andrews and Kasy (2019) review eligible studies

and conclude that no studies were excluded by this restriction. Thus, the complete set of

eligible studies was selected for replication.
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3. Within-study replication selection: the most important statistically significant result

within a study, as emphasized by the authors, was chosen for replication. Further details

are in the supplementary materials in Camerer et al. (2016). Of the 18 replication studies,

16 were significant at the 5% level and two had p-values slightly above 0.05 but were

treated as ‘positive’ results for replication and included in the replication rate calculation.

I assume replication selection is random with respect to the t-ratio for results whose

p-values are below or only slightly above 0.05. This implies that βp2 measures the relative

probability of being published and chosen for replication for a result whose p-value is slightly

above 0.05, compared to if it were strictly below 0.05. Overall, the empirical results are

valid for the population of ‘most important’ significant (or ‘almost significant’) results, as

emphasized by authors, in experimental economics papers published in top economics journals

between 2011 and 2014.

Psychology.—Next, consider replication selection in Open Science Collaboration (2015):

1. Eligibility: Studies published in 2008 in one of the following journals: Psychological

Science, Journal of Personality and Social Psychology, and Journal of Experimental Psy-

chology: Learning, Memory, and Cognition.

2. Study selection: Open Science Collaboration (2015) write: ‘The first replication teams

could select from a pool of the first 20 articles from each journal, starting with the first

article published in the first 2008 issue. Project coordinators facilitated matching articles

with replication teams by interests and expertise until the remaining articles were difficult

to match. If there were still interested teams, then another 10 articles from one or more

of the three journals were made available from the sampling frame.’ Importantly, the

most common reason why an article was not matched was due to feasibility constraints

(e.g. time, resources, instrumentation, dependence on historical events, or hard-to-access

samples).

3. Within-study replication selection: the last experiment reported in each article was

chosen for replication. Open Science Collaboration (2015) write that, ‘Deviations from

selecting the last experiment were made occasionally on the basis of feasibility or recom-

mendations of the original authors.’ A small number of results had p-values just above

0.05 but were treated as ‘positive’ results for replication, as in Camerer et al. (2016).

This selection mechanism implies that the empirical results are valid for the distribution of

last experiments in the set of eligible journals. Since neither studies nor results were selected
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based on statistical significance, it is reasonable to treat the ‘last experiment’ rule as effectively

random. In this case, we can interpret the results are being valid for all results in the eligible

set of journals.

Social science experiments.—Finally, consider replication selection in Camerer et al. (2018):

1. Eligibility: Experimental studies in the social sciences published in Nature or Science

between 2010 and 2015.

2. Study selection: Camerer et al. (2018) include all studies that: ‘(1) test for an experi-

mental treatment effect between or within subjects, (2) test at least one clear hypothesis

with a statistically significant finding, and (3) were performed on students or other ac-

cessible subject pools. Twenty-one studies were identified to meet these criteria.’

3. Within-study replication selection: Camerer et al. (2018) write, ‘We used the fol-

lowing three criteria in descending order to determine which treatment effect to replicate

within each of these 21 papers: (a) select the first study reporting a significant treat-

ment effect for papers reporting more than one study, (b) from that study, select the

statistically significant result identified in the original study as the most important result

among all within- and between-subject treatment comparisons, and (c) if there was more

than one equally central result, randomly select one of them for replication.’ All results

selected for replication had p-values strictly below 0.05.

This selection mechanism implies that the empirical results are valid for the population

of statistically significant between- or within-subject treatment comparisons in experimental

social science, which were identified by authors as the most ‘important’ and published in

Nature or Science between 2010 and 2015.

E. Predicted Replication Rates Under Alternative Power Calculations

This appendix presents several extensions to the main empirical results on predicting repli-

cation rates in experimental economics, psychology and social science. The first extension

allows for variation in the application of the common power rule around mean intended power.

Results are similar to those in the main text, which assume no variability in the application

of the common power rule. The second extension generates replication rate predictions under

the rule of setting replication power equal to original power. This delivers lower replication

rates than the common power rule.
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Alternative power calculation rules.—Consider first the rule used for calculating replication

power in the main text, and then two additional approaches. For concreteness, suppose we

want to calculate the replication standard error for a simulated original study pxsim, σsim, θsimq.

1. Common power rule (mean): This is the rule reported in the results in the main

text. It assumes no variability in the application of the common power rule, such that all

replications have mean intended power 1 ´ βn. This rule implies

σsim
r pxsim, βn

q “
|xsim|

1.96 ´ Φ´1pβnq
(59)

2. Common power rule (realized): Intended power for individual replications varied

around mean intended power for at least two reasons. First, replication teams were

instructed to meet minimum levels of statistical power, and encouraged to obtain higher

power if feasible. Second, a number of replication in Open Science Collaboration (2015)

did not meet this requirement. Figure E1 shows the distribution of realized intended

power in replications for experimental economics and psychology. Realized intended power

is right-skewed for psychology. In experimental economics, realized intended power is

distributed more tightly around mean.

To capture variability in the application of the common power rule, take a random draw

from the empirical distribution of |x|{σr and denote it 1.96 ´ pβn. Then realized intended

power for simulated study pxsim, σsim, θsimq is equal to

σsim
r pxsim, pβn

q “
|xsim|

1.96 ´ Φ´1ppβnq
(60)

3. Original power: Set replication power equal to the power in the original study:

σsim
r pσsim

q “ σsim (61)

This rule has been proposed as a straightforward, intuitive approach for designing repli-

cation studies. In a review of replication studies by Anderson and Maxwell (2017), 19 of

108 studies used this approach.

Results.—Table E1 presents the results for all three applications. Panel A shows that

allowing intended power to vary across replications (‘Realized power’) yields similar replication

rate prediction to assuming all replications have intended power equal to the report mean (‘92%

on X’). In fact, in all three applications, the accuracy improves very slightly under the realized
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power rule. The biggest differences is in psychology, because the realized power rule accounts

for the fact that the distribution of intended power is right skewed.

Panel B examines the proposed rule of setting replication power equal to original power. In

all three cases, the expected replication rate is lower than under the common power rule.

Figure E1. Histograms of realized intended power in replication studies in experimental economics, psychology,
and social science. Data are from Camerer et al. (2016), Open Science Collaboration (2015), and Camerer et
al. (2018), respectively. Realized intended power is defined as 1 ´ Φp1.96 ´ ψ ¨ x

σr
q with ψ “ 1 in economics

and psychology and ψ “ 3{4 in social science. The horizontal dashed line is reported mean power in each
application. In economics and psychology, this is 92% to detect the original effect size. In social science, this is
90% to detect three quarters of the effect size.

.
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Table E1 – Replication Rate Predictions Under Alternative Replication Power Rules

Economics Psychology Social science
A. Replication rate predictions

Nominal target (intended power) 0.92 0.92 –
Observed replication rate 0.611 0.348 0.571
92% on X 0.600 0.545 0.553
Realized power 0.615 0.523 0.565

B. Alternative rule
Same power 0.550 0.486 0.494

Notes: Economics experiments refer to Camerer et al. (2016), psychology experiments to Open Science Collab-
oration (2015), and social science experiments to Camerer et al. (2018). The replication rate is defined as the
share of original estimate whose replications have statistically significant findings of the same sign. Figures in
the first row are observed outcomes from large-scale replication studies. Remaining rows report predicted repli-
cation rates using parameter estimates Table 1 and assuming different rules for calculating replication power.

F. Intuition Behind Empirical Decomposition Results

This Appendix provides intuition behind the empirical decomposition results. For reference, the

decomposition of the replication rate gap derived in the main text is restated below. Calculating

this decomposition empirically in experimental economics and psychology shows that: (i) failing

to account for the non-linearity of the power function explains over 90% of the explained

replication rate gap; (ii) attempts to replicate original estimates with the ‘wrong’ sign account

for between 5.7–8% of the gap; and (iii) regression-to-the-mean in replication attempts accounts

for a small amount of the replication rate gap in economics and decreases the gap in psychology.

Below I provide details underlying the intuition behind the empirical results.

p1 ´ βnq ´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1
‰

“ p1 ´ βnq ´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇrptq “ 1 @t, pptq “ 1 @t,X ě 0
‰

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

(i) non-linearity gap

`P

´

X ă 0|SX “ 1
¯´

E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ă 0
‰

¯

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(ii) ‘wrong’ sign gap

`E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇrptq “ 1 @t, pptq “ 1 @t,X ě 0
‰

´E
“

RP pX,Θ, σrpX,Σ, β
nqq

ˇ

ˇSX “ 1, X ě 0
‰

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

(iii) regression-to-the-mean gap

(62)

Non-linearity gap.—Figure F1 presents normal simulations showing that the non-linearity

gap is largest for standardized true effects ω ” θ{σ which are close to 0, and remains above 0.2

for ω ď 1. It decreases monotonically as the true effect size ω increases and approaches zero

in the limit.21 It follows that the size of the non-linearity gap depends on the distribution of

21See Lemma A1.5 in Appendix A for a proof which shows that the non-linearity issue vanishes as true effect
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ω. The first row of graphs in Figure F2 plot the distribution of latent studies that have the

‘correct’ sign (this corresponds to the expression for the ‘non-linearity’ gap in equation (62)).

We see that a high fraction of latent studies have ω ă 1, which explains why the non-linearity

gap explains such a large role.

Wrong-sign gap.—Random sampling variation means that original estimates will occasion-

ally have the ‘wrong’ sign. When this occurs, the replication probability is bounded above by

0.025. The extent to which this issue contributes to low replication rates therefore depends

on the share of studies that have the wrong sign among significant studies. This share will

be higher in settings with small true effects and low statistical power (Gelman and Carlin,

2014; Ioannidis et al., 2017). As power approaches 100%, the ‘wrong-sign gap’ approaches zero

because the probability of drawing an estimate with the ‘wrong’ sign shrinks to zero.

Table F1 presents figures based on the estimated models, which show that significant results

in experimental economics and psychology are relatively low-powered. The share of significant

studies with the ‘wrong’ sign is 3% in economics, and 5% in psychology owing to lower statistical

power. As a consequence, the wrong-sign gap is around 1 percentage point higher in psychology

compared to economics.

Table F1 – Power and Estimates With the Wrong Sign For Statistically Significant Studies

Experimental economics Experimental psychology

Mean normalized true effect 2.835 2.251
Mean power 0.550 0.486
Share with wrong sign 0.030 0.054
Wrong-sign gap 0.022 0.033

Notes: Figures are based on simulated draws from the estimated distribution of latent studies in Table 1. All
statistics are calculated on the subset of statistically significant studies. The normalized true effect is defined
as θ{σ. Power is defined as the probability of obtaining a statistically significant effect at the 5% level. The
wrong-sign gap is defined in (62).

Regression-to-the-mean gap.—The regression-to-the-mean gap is 1% in economics and

slightly negative for psychology (i.e. conditioning on statistical significance increases the repli-

cation rate compared to when there is no conditioning). The sign of the regression-to-the-mean

gap is ambiguous because of two opposing effects from conditioning on statistical significance.

To see these two effects, consider the figures in Table F2 which are based on the estimated em-

pirical model. For the first effect, note that conditioning on significant findings increases mean

bias in both applications.22 This makes replication more difficult for any fixed level of ω. For

sizes approach infinity.
22Bias is positive for latent studies because these statistics condition on original estimates X˚ to have the

same sign as true effects.
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Figure F1. Replication Rate Gap Decomposition: Monte Carlo Simulations

Notes: Plots are based on simulating studies from an Npω, 1q distribution, for different values of ω. Replication
estimates are drawn from a Npω, σrpx, β

nq2q, where σrpx, β
nq is set based on the common power rule to detect

the original effect x with 1 ´ βn “ 0.92 intended power. The non-linearity gap and regression-to-the-mean gap
are based on equation (62) and calculated using Monte Carlo methods.
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Figure F2. Distribution of Normalized True Effects: Latent Studies and Significant Studies

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Densities are based on simulated draws from the estimated distribution of latent studies
in Table 1. Dashed vertical lines show the median of the distribution.

the second effect, note that conditioning also tends to select studies with larger standardized

true effects ω, which have higher replication probabilities.23 High replication probabilities arise

because (i) bias is lower for larger true effects; and (ii) non-linearity effects are more severe for

low-powered studies.

The bottom panel in Figure F1 present normal simulations which show that mean bias

decreases as the standard effect size increases, and approaches zero in the limit. The intuition

is that censoring insignificant original estimates has little ‘bite’ when the true effect is very

large, since the probability of drawing an insignificant estimate is very small. Thus, as true

effects become very large, the regression-to-the-mean gap approaches zero because the expected

replication probability of statistically significant findings with the ‘correct’ sign converges to

the expected replication probability of latent studies with the ‘correct’ sign.

23The impact of conditioning on the full distribution of ω can be seen in Figure F2.
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Table F2 – True Effect Sizes and Bias For Studies with the ‘Correct’ Sign

Economics experiments Psychology experiments
Latent Published & significant Latent Published & significant

Mean bias 0.113 0.200 0.091 0.173
Mean standardized true effect 1.415 2.915 1.084 2.367

Notes: Economics experiments refers to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). Figures are based on simulated draws from the estimated distribution of latent studies
in Table 1. The mean of the standardized true effect is equal to ErΩ˚|S˚

X , X
˚ ą 0, Ds. Mean Bias is equal

to ErX˚ ´ Ω˚|S˚
X , X

˚ ą 0, Ds. ‘Latent studies’ allow S˚
X and D to be either 0 or 1. ‘Published & significant

studies’ set S˚
X “ 1 and D “ 1.

G. Extensions to the Empirical Model

This appendix presents results from two extensions. The first extension incorporates p-hacking

and manipulation into the empirical model. In the second extension, I use the model (with-

out p-hacking) to predict relative effect sizes, a continuous measure of the replication that is

complementary to the replication rate.

A. Augmented Model with p-Hacking and Manipulation

The augmented model.—p-hacking captures a wide range of researcher behaviors to obtain

‘more favorable’ p-values e.g. the way data are cleaned, adopting convenient variable defini-

tions, reporting favorable specifications, dropping inconvenient observations etc. I augment

the empirical model to incorporate a particularly egregious form of manipulation, where re-

searchers who obtain a marginally insignificant standardized estimates misreport their result

as significant with some prespecified probability.

Formally, the augmented model adds one step in the model outlined in the General Theory

section. The p-hacking step occurs after the first stage where researchers draw a latent estimate

X˚. The model of p-hacking assumes that researchers misreport marginally insignificant results,

defined as any X˚ P p1.46Σ˚, 1.96Σ˚q, with probability βh. Misreported results ĂX˚ are drawn

from a uniform distribution over r1.96Σ˚, 2.46Σ˚s. Publication and replication selection depend

on the reported estimate ĂX˚. When βh “ 0 we have the original model. This augmented model

allows us to show how the predicted replication rate decreases as we vary βh from zero (no

p-hacking) to one (all marginally insignificant results are p-hacked). Note that the replication

rate is defined as the share of reported significant results that are replicated with the same sign.

Remarks.—Predictions are based on latent distribution of studies estimated in the standard

model with no p-hacking. Thus, the augmented model assumes that the estimated standard
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models reflect the true DGP. A close model fit in economics and social science is consistent

with no manipulation in these fields. This suggests that it may be reasonable to use estimates

of the latent distribution of studies as a basis for the augmented p-hacking model, since the

assumed p-hacking step occurs after latent studies are drawn. More caution should be applied

when interpreting the results in psychology, where the model can only explain two-thirds of the

replication rate gap.

Additionally, note that the accompanying code is available. It allows any one interested

to test alternative specifications e.g. modifying the ranges over which marginally insignificant

results are defined and misreported results are drawn from.

Results.—Figure G1 shows the results for specifications with βh “ 0, 0.1, 0.2, ..., 1. Across all

three applications, the replication rate decreases and the share of misreported results increases

from no p-hacking (βh “ 0) to complete p-hacking (βh “ 1). Figure G1 shows that the

magnitude of the decline in the replication rate is relatively small for most values of βh when

compared to the overall distance between the replication rate and intended power in economics

and psychology. If all marginally significant results are manipulated pβh “ 1q, then the share

of significant results that are p-hacked is around 30%.

A useful benchmark for what might constitute a realistic value for βh comes from Brodeur

et al. (2016) and Brodeur et al. (2022), who estimate that the proportion of ‘wrongfully claimed

significant results’ is around 10%. In our model, this implies that between 22–26% of significant

results are p-hacked (Table G1). Under these specifications, the replication rate falls by between

2-4 percentage points. In economics and psychology, this implies that p-hacking accounts for

between 5-6% of the total gap between the predicted replication rate and mean intended power

of 92%.
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Figure G1. Predicted Replication Rate With p-Hacking

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social sciences to Camerer et al. (2018). See text for details on the augmented model.
The horizontal dashed line denotes mean intended power in economics and psychology. Replications for social
science experiments implemented the fractional power rule to detect three-quarters of original effects with 90%
power in its first stage. This rule for setting power does not have a well-defined replication target.

Table G1 – Specifications Where 10% of Significant Results are p-Hacked

Implied βh Replication rate Replication rate Share of gap explained
(p-hacking) (no p-hacking) by p-hacking

Economics 0.25 0.578 0.600 0.063
Psychology 0.22 0.526 0.545 0.047
Social sciences 0.26 0.515 0.553 –

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social science experiments to Camerer et al. (2018). The implied βh is the probability of
p-hacking which is consistent with having 10% of significant results wrongfully claimed as p-hacked. The share
of the gap explained by p-hacking is defined as the difference between the non-p-hacked replication rate and the
p-hacked replication rate divided by the difference between intended power and the p-hacked replication rate.
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B. Relative Effect Size

The main focus of this article is the binary measure of replication because of its status as the

primary replication indicator in the large-scale replication studies.24 However, complementary

measures are frequently presented alongside the replication rate. Perhaps the most common

is the relative effect size, a continuous measure of replication defined as the ratio of replica-

tion effect size and original effect size. Relative effect sizes typically range between 0.35 and

0.7. Below, I include a brief theoretical discussion of the relative effect size and then present

predictions of this measure based on the estimated models.

Theoretical discussion.—The relative effect size measure for individual studies may be infor-

mative about biases affecting original studies, especially when original studies are well-powered.

However, as an aggregate measure of reproducibility, the relative effect size measure may be

subject to similar issues to the replication rate, at least in the case where it is defined exclusively

over significant findings.

First, if the relative effect size is defined over significant original results, then it will be

largely uninformative about the ‘file-drawer’ problem (Proposition B1).25 Second, non-random

sampling of significant results for replication mechanically induces inflationary bias in original

estimates and regression to the mean in replication estimates, such that relative effect sizes are

below one in expectation. Thus, similar to the replication rate, it has no natural benchmark

against which to judge deviations, making it challenging to interpret. Relatedly, the average

relative effect size is also very sensitive to power in original studies, which is unobserved. Figure

G2 provides an illustration with intended power set to 0.9, which shows that the expected

relative effect size for significant results is increasing in the power of original studies, and

approaches one only as statistical power approaches 100%.

24Power calculations in replications are themselves typically designed to measure a binary notation of repli-
cation ‘success’ or ‘failure’.

25Defining it over null results may present its own difficulties. For a perfectly measured null effect, the
denominator in the statistic is equal to zero and the statistic is not well defined. On the other hand, if it is
close to but not equal to zero, then the statistic is highly sensitive to the precision of replication estimates; this
raises questions about how one should set replication power when replicating a null effect.
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Figure G2. Expected Relative Effect Size of Significant Original Studies and their Statisti-
cal Power

Notes: Illustration for the relationship between original power and the expected relative effect size of significant
findings under the common power rule are both functions of ω “ θ{σ (normalized to be positive). Original
power to obtain a significant effect with the same sign as the true effect is equal to 1´Φp1.96´ωq. The expected

relative effect size is calculated by taking 106 draws of Z from Npω, 1q and then calculating 1
Msig

řMsig

i“1 ρsigi,r {ρsigi ,

where ρ “ tanh z denotes the Pearson correlation coefficient obtained by transforming the Fisher-transformed
correlation coefficient (Fisher, 1915); and Msig is the number of significant latent studies. The superscript
sig reflects the fact that only statistically significant original results at the 5% level and their replications are
included in the calculation. Replication estimates zi,r are drawn from an Npω, σr,ipzi, β

nq2q distribution. The
replication standard error is calculated using the common power rule to detect original effect sizes with 90%
power (i.e. 1 ´ βn “ 0.9), which is given by σrpzi, β

nq “ |zi|{r1.96 ´ Φ´1pβnqs “ |zi|{3.242.

Empirical results.—The estimated models in Table 1 can be used to generate predictions of

the average relative effect sizes. To procedure for simulating replications is identical as presented

in the main text for the replication rate. Let txi, σi, xr,i, σr,iu
Msig

i“1 be the set of simulated original

studies that are published and significant, and corresponding replication results; Msig is the

size of the set. The predicted relative effect size is equal to

1

Msig

Msig
ÿ

i“1

ρsigi,r

ρsigi

(63)

where ρ “ tanh z denotes the Pearson correlation coefficient which is obtained by transforming

the Fisher-transformed correlation coefficient (Fisher, 1915). Results are presented in Table G2.
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The predicted average relative effect size is relatively close to observed average relative effect

size in economics and social science, although somewhat optimistic in both cases. In psychology,

the predicted average relative effect size is very optimistic compared to the observed value.

Economics Psychology Social Sciences

Observed average relative effect size 0.657 0.374 0.443
Predicted average relative effect size 0.703 0.637 0.542

Table G2. Average Relative Effect Size Predictions

Notes: Economics experiments refers to Camerer et al. (2016), psychology experiments to Open Science Col-
laboration (2015) and social science experiments to Camerer et al. (2018). Observed relative effect sizes are
based on data from large-scale replication studies. Predicted average relative effect sizes are calculated using
equation (63) and the procedure outlined in the text.

H. Extending the Replication Rate Definition

This appendix analyzes a generalization of the replication rate definition that extends to in-

significant results. It outlines a number of issues with this proposal.

The Generalized Replication Rate.—Suppose we extend the definition of the replication rate

such that insignificant original results are counted as ‘successfully replicated’ if they are also

insignificant in replications. Assume replication selection is a random sample of published

results. Then we have the following definitions:

Definition H1 (Generalized replication probability of a single study). The replication prob-
ability of a study pX,Σ,Θq which is published pD “ 1q and chosen for replication (R “ 1)
is

ĄRP
´

X,Θ, σrpX,Σ, βnq

¯

“

$

’

’

&

’

’

%

P

ˆ

|Xr |

σrpX,Σ,βnq
ě 1.96, signpXq “ signpXrq

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βnq

˙

if 1.96.Σ ď |X|

P

ˆ

|Xr |

σrpX,Σ,βnq
ă 1.96

ˇ

ˇ

ˇ
X,Θ, σrpX,Σ, βnq

˙

if 1.96.Σ ą |X|

(64)

Definition H2 (Expected generalized replication probability). The expected generalized repli-

cation probability equals

E

”

ĄRP
´

X,Θ, σrpX,Σ, βnq

¯ı

“ P

´

1.96.Σ ď
ˇ

ˇX
ˇ

ˇ

¯

E

«

ĄRP
´
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ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇX
ˇ

ˇ

ff

`

ˆ
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´
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ˇ

ˇX
ˇ

ˇ

¯

˙

E

«

ĄRP
´

X,Θ, σrpX,Σ, βnq

ˇ

ˇ

ˇ

ˇ

ˇ

X,Θ, σrpX,Σ, βnq, 1.96.Σ ą
ˇ

ˇX
ˇ

ˇ

ff

(65)

First, note that Definition H2 equals the standard replication rate definition when the

expectation is taken only over significant studies because, in this case, P
`

|X| ě 1.96.Σ
˘

“ 1.

The degree to which the expected generalized replication probability differs from the standard
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expected replication probability depends on two factors. First, the share of published results

that are insignificant. Second, the expected probability that replications will be insignificant

conditional on original estimates being insignificant.26

Empirical Results.—To analyze the generalized replication rate, we can apply the empir-

ical approach outlined in the main text, but using the generalized definition in place of the

original definition. Recall that the original replication rate is invariant to publication bias

against null results. The generalized replication rate, by contrast, does vary as the degree of

selective publication against null results changes. Thus, two sets of results are presented for

comparison. The first set assumes selective publication using estimated selection parameters

in Table 1. The second set assumes no selective publication (i.e. that all results are published

with equal probability). We examine two rules for calculating replication power: the common

power rule and the original power rule (where the replication standard error is set equal to the

original standard error). For more details on different rules for calculation replication power,

see Appendix E.

Table H1 reports the results for both applications. Under the common power rule, the sim-

ulated generalized replication rate remains below intended power in both publication regimes.

Under the original power rule, it is relatively low when there is selective publication and around

80% when there is no selective publication.

These generalized replication rate predictions differs from the standard replication rate pre-

dictions for two reasons: (i) the share of insignificant results in the published literature and

(ii) the replication probability when results are insignificant, which depends on the power rule

used in replication studies. On the first point, moving from the selective publication regime

to the no selective publication regime implies a dramatic increase in the share of insignificant

published results; in both applications, null results change from a minority of published results

to a majority. On the second point, the results show that the replication power rules considered

here have some undesirable properties. First, note that the common power rule is designed to

detect original estimates with high statistical power. This implies that low-powered, insignifi-

cant original results will be high-powered in replications, which increases the probability that

they are significant and thus counted as replication ‘failures’ under the generalized definition.

The original power rule has the reverse problem. On the one hand, low-powered, insignificant

original studies are likely to be insignificant in replications, which counts as a ‘successful’ repli-

cation under the generalized definition. However, on the other hand, low-powered, significant

original studies will have low replication probabilities when the same low-powered design is

26Additionally, note that this definition implies that if θ “ 0, then ĄRP
´

X,Θ, σrpX,Σ, β
nq|Θ “ 0

¯

“ 0.90375.

That is, the replication probability of null results is constant and independent of power in original studies and
replication studies.
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repeated in replications. The generalized replication rate therefore depends crucially on the

share of significant and insignificant findings in the published literature, and the distribution

of standard errors. Under the original power rule with no selective publication, the generalized

replication rate is around 80% in both applications; however, with greater power in original

studies, the replication rate would fall.

While the generalized replication rate changes as selective publication is reduced, the direc-

tion of this change depends on which replication power rule is used: with the original power

rule the replication rate increases, while with the common power rule it decreases.

Overall, generalizing the replication rate with Definition H2 does not deliver replication

rates close to intended power under the common power rule. For the original power rule, it is

higher when there is no selective publication because replications repeat low-power designs for

low-powered original studies with insignificant results. The generalized replication rate under

this original power rule will therefore be sensitive to the distribution of power in original studies.
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Table H1 – Predicted Generalized Replication Rate Results

Simulated statistics

A Economics experiments 92% for X Original power

Selective publication

Generalized replication rate 0.600 0.555
PpReplicated|SX “ 1q 0.601 0.552
PpReplicated|SX “ 0q 0.542 0.774
PpSX “ 1q 0.988 0.988
PpSX “ 0q 0.016 0.016

No selective publication

Generalized replication rate 0.436 0.789
PpReplicated|SX “ 1q 0.601 0.551
PpReplicated|SX “ 0q 0.385 0.862
PpSX “ 1q 0.236 0.236
PpSX “ 0q 0.764 0.764

B Psychology experiments

Selective Publication
Generalized replication rate 0.541 0.526
PpReplicated|SX “ 1q 0.539 0.478
PpReplicated|SX “ 0q 0.554 0.824
PpSX “ 1q 0.861 0.861
PpSX “ 0q 0.139 0.139

No selective publication

Generalized replication rate 0.474 0.805
PpReplicated|SX “ 1q 0.537 0.479
PpReplicated|SX “ 0q 0.460 0.88
PpSX “ 1q 0.188 0.188
PpSX “ 0q 0.812 0.812

Notes: Economics experiments refer to Camerer et al. (2016) and psychology experiments to Open Science
Collaboration (2015). The generalized replication rate is defined in the text. The indicator variable SX equals
one for significant results and zero otherwise. Economics experiments refers to Camerer et al. (2016) and
psychology experiments to Open Science Collaboration (2015). Simulated statistics are based on parameter
estimates in Table 1. Different column represent different rules for calculating power in replications.
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